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Abstract 

Biofilms are ubiquitous in healthcare settings. By nature, biofilms are less susceptible to antimicrobials and are associ‑
ated with healthcare‑associated infections (HAI). Resistance of biofilm to antimicrobials is multifactorial with the pres‑
ence of a matrix composed of extracellular polymeric substances and eDNA, being a major contributing factor. The 
usual multispecies composition of environmental biofilms can also impact on antimicrobial efficacy. In healthcare 
settings, two main types of biofilms are present: hydrated biofilms, for example, in drains and parts of some medical 
devices and equipment, and environmental dry biofilms (DSB) on surfaces and possibly in medical devices. Biofilms 
act as a reservoir for pathogens including multi‑drug resistant organisms and their elimination requires different 
approaches. The control of hydrated (drain) biofilms should be informed by a reduction or elimination of microbial 
bioburden together with measuring biofilm regrowth time. The control of DSB should be measured by a combina‑
tion of a reduction or elimination in microbial bioburden on surfaces together with a decrease in bacterial transfer 
post‑intervention. Failure to control biofilms increases the risk for HAI, but biofilms are not solely responsible for disin‑
fection failure or shortcoming. The limited number of standardised biofilm efficacy tests is a hindrance for end users 
and manufacturers, whilst in Europe there are no approved standard protocols. Education of stakeholders about bio‑
films and ad hoc efficacy tests, often academic in nature, is thus paramount, to achieve a better control of biofilms 
in healthcare settings.
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Background
The term biofilm was first used in 1975 from the visu-
alisation of biofilms in a trickling wastewater filter and 
it described the microbial community that adheres to 
both abiotic and biotic surfaces [1]. Microbial biofilms 
are the most prevalent form of natural ecosystems [2, 3] 
and often composed of a complex microbial community 
embedded in an extracellular polymeric matrix (EPS) 
containing polysaccharides, proteins, lipids, enzymes, 
extracellular-DNA (eDNA) and water [4, 5]. Interactions 

between species impact on biofilm formation, biofilm 
evolutionary fitness, metabolic cooperation, and contrib-
ute to an increased in antibiotic resistance and biofilm 
susceptibility to disinfection [6–9]. Yet most studies on 
antimicrobial resistance in biofilms are based on the use 
of mono-species [10, 11].

Biofilms have been at the forefront of healthcare 
research for many years due to their association with 
chronic wounds, urinary catheter infections, pneumonia, 
and medical devices [5, 12, 13]. Dispersion and dissemi-
nation of pathogens from a biofilm, whether that be in a 
host from medical devices, or on a near-patient surface, 
pose a greater risk of infection [14].

It has been estimated that between 65 and 80% 
of all bacterial and chronic infections arise from 
biofilms [15]. Biofilms are also a leading cause of 
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catheter-associated urinary tract infections (CAUTI), 
which has been estimated to cost $451 million dollars/
year in the USA alone [16]. Globally, it is estimated 
that the prevalence of multidrug resistance in biofilms 
from HAI ranges from 17.9 to 100%, with species such 
as Staphylococcus aureus, Pseudomonas aeruginosa and 
Acinetobacter baumannii as common causative organ-
isms [17]. These figures are likely to increase due to 
frequent use of indwelling medical devices and other 
implants [18].

Whilst “hydrated” biofilms have been the most studied 
in the literature, biofilms formed on dry environmental 
surfaces, which have only been described since 2012 [19], 
are widespread in the healthcare environment [20–22].

This review presents an overview of the importance of 
biofilms in the healthcare environment and their chal-
lenges to infection control and prevention regimens. This 
review does not intend to provide an assertive narrative 
of all the literature dealing with biofilms and disinfection 
but is using examples pertinent to both the use of disin-
fectants and antibiotics, and hydrated and dry biofilms.

For the purpose of this review, cleaning is defined as 
the removal of dirt from surfaces, whilst disinfection 
concerns the reduction of microorganisms on surfaces 
as a result mainly of a microbiocidal effect, combined or 
not with mechanical removal. Biocides are defined as “a 
chemical substance, mixture, or microorganism intended 
to control any harmful organism in a way that is not 
purely physical or mechanical” (https:// www. hse. gov. uk/ 
bioci des/ intro ducti on. htm; 21/08/2023). The term anti-
microbial refers to both biocides and chemotherapeutic 
antibiotics. Resistance is defined as surviving bacteria to 

disinfectant or a disinfection process, or to a clinical con-
centration of an antibiotic.

Bacteria in hydrated biofilms are more resilient 
than planktonic ones to cleaning and disinfection
Hydrated bacterial biofilms are composed of bacterial 
cells embedded in a matrix of extracellular polymeric 
substances (EPS) which includes polysaccharides, pro-
teins, lipids, extracellular enzymes, metal ions, and 
eDNA [5], the composition of which depends on the bac-
terial species forming the biofilms and environmental 
location.

Biofilm resistance to disinfection a multifactorial event
Decreased susceptibility of bacteria embedded in 
hydrated biofilms to disinfection has been well reviewed 
over the years [23–26]. The reasons behind such a 
decrease in susceptibility is multifactorial (Fig. 1) [25–27] 
and include:

(i) “Mechanical” quenching/neutralisation: extracel-
lular polymeric substances (EPS) matrix and to some 
extend lysed bacteria effectively act as organic load and 
contribute to the production of an antimicrobial concen-
tration gradient [28]. eDNA in the EPS matrix contrib-
utes to antimicrobial resistance [29, 30] and horizontal 
resistance gene transfer [29]. (ii) Reduced metabolism 
and growth rate: the slow growth rate and metabolism 
of these bacteria lend themselves to the reduced effi-
cacy of antibiotics in the treatment of biofilm infection, 
as many compounds rely on active metabolism to work 
[31, 32]. (iii) High cell density and quorum sensing (QS) 
plays an important role in biofilm formation and bacteria 

Fig. 1 Mechanisms contributing to hydrated biofilm resistance to antimicrobials
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or biofilm raft detachment from biofilm [33, 34], but 
also has other functions including self-organisation and 
regulation of bacterial cells [35]. High cell density is 
required to have QS level impacting on cell signalling, 
gene expression and physiological changes in neighbour-
ing cells [35–37]. (iv) Presence of persister cells which 
are metabolically inactive bacteria scattered through the 
biofilms, but different from the dormant bacterial cell 
population as a result, for example, of reduced access to 
nutrient or oxygen [38, 39]. It has been suggested that 
these cells are responsible for biofilm regrowth follow-
ing biocide exposure [38, 39]. (v) Extracellular enzymatic 
degradation of antimicrobials [40]. (vi) Expression of spe-
cific mechanisms of resistance (e.g. degradation, efflux) in 
surviving bacteria, often located in “pockets” of survivors 
scattered through the biofilm. (vii) Acquisition of resist-
ance determinants through increased horizontal gene 
transfer, including antimicrobial resistance genes (ARG) 
and quorum sensing genes [41, 42]. (viii) Increased muta-
tion rates which can be associated with an increase in 
oxidative stress with a biofilm [43].

The prominent role of EPS in biofilm resistance
EPS is a major contributor of biocide resistance of bac-
teria embedded in biofilms [44, 45], but not the sole 
contributor [46]. The EPS matrix is produced by micro-
organisms within the biofilm during the latter stages of 
biofilm development. EPS is considered as a defence bar-
rier, but also it is an important factor in the development 
of new biofilms and biofilm dispersion. The dispersal of 
bacteria from biofilms is pertinent to healthcare since 
slough off biofilm parts can colonise new areas of either 
an environment or a host posing a severe threat [13]. Not 
only does dispersal play a role in the transmission of bac-
teria from biofilms, but patient areas are often crowded 
with equipment, lending themselves as a source for trans-
mission. Any EPS which remains on an abiotic surface 
will also present a new structure for another biofilm to 
develop rapidly. The EPS matrix is also responsible for 
reduced nutrient and  O2 in the depth of the biofilm, 
reducing metabolism and impacting growth rate. Bacte-
rial cells residing in the depth of a biofilm have reduced 
metabolic activity due to the low oxygen concentrations 
[47].

The impact of multispecies biofilm on resistance 
to disinfection
Multispecies biofilms are generally considered to be 
less susceptible than mono-species biofilms [9, 48, 49]. 
Some bacterial species within a complex biofilm have 
been shown to protect susceptible ones [10, 50, 51]. Bri-
dier et  al. [50] showed that Bacillus subtilis endoscope 
washer disinfector isolate, a strong EPS producer, which 

was shown to be resistant to chlorine dioxide (0.03%), 
hydrogen peroxide (7.5%) and peracetic acid (2.25%) [52] 
protected S. aureus from peracetic acid (0.35%) when in a 
biofilm. Likewise, Acinetobacter johnsonii was shown to 
protect Salmonella enterica subsp. enterica serovar Liv-
erpool in a dual biofilm against benzalkonium chloride 
(300 mg/L) [53]. However, here, the decrease in suscep-
tibility was associated with a change in outer membrane 
lipid composition driven by the presence of A. johnsonii 
[53]. Decreased biocide susceptibility to biocide follow-
ing phenotypic bacterial adaptation within a biofilm has 
been described [54]. This is different from the impact of 
low concentrations of a biocide on bacterial phenotypic 
adaption within a biofilm, a phenomenon which has been 
well reported [25, 55] but not the subject of this review.

From the past literature, we know that high cell den-
sity on biofilm community structure plays an important 
role in biocide resistance [56–58]. Quorum sensing is a 
driving force for biofilm development, self-organisation 
and cell cooperation [35], but it also plays a role in other 
functions including, but not limited to, EPS synthesis, 
expression of virulence factors, antimicrobial including 
biosurfactant synthesis, extracellular enzyme synthesis 
[33, 59–63]. A critical concentration of QS-molecules 
needs to be reached to elicit a physiological response 
[37]. In biofilms QS molecules expression or accumula-
tion is driven by high cell density [35–37, 64].

Impact of biofilms on disinfectant efficacy
Bacteria embedded in biofilms are less susceptible than 
their planktonic counterparts [25, 39, 48, 49, 65–70] and 
might account for the failure of surface disinfection, with 
bacteria remaining on surfaces after biocide exposure 
[71, 72]. In addition, one needs to consider the impact 
of biofilm maturity. Gene expression controlling various 
metabolic activity and resistance mechanisms has been 
shown to change with biofilm aging [73]. Detached bac-
teria released from a biofilm present an intermediate sus-
ceptibility profile to biocides, somewhat between sessile 
and planktonic cell susceptibility [66, 69]. The resistance 
profile of detached bacteria can be somewhat related to 
the presence of EPS [44].

There have been many studies investigating the sus-
ceptibility of biofilms to disinfection. These studies 
highlighted that the lack of disinfectant efficacy was asso-
ciated with biofilm thickness and maturity [66, 74, 75] 
or the presence of persisters [76] (Fig.  1). Whilst there 
are several parameters affecting biocide efficacy against 
biofilms, the use of quorum-sensing (QS) inhibitors has 
been explored with some success to potentiate antimicro-
bial efficacy [77, 78]. In addition, the surface material that 
harbours biofilms and the type of soiling (organic load) 
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can impact on the ability of biocides or cleaning agents to 
remove biofilms [79].

The impact of dry environmental surface biofilms 
on disinfection: a new paradigm
Environmental dry surface biofilms consist of multi spe-
cies communities present on dry surfaces, embedded 
in EPS, and subjected to repeated desiccation periods. 
There are no official definitions of DSB yet, but DSB are 
not planktonic bacteria dried on surfaces. DSB were first 
reported in 2012 [19], whilst the term environmental dry 
surface biofilms was coined in 2015 [20]. DSB have been 
shown to be widespread in the healthcare environment 
[19–21, 80], with 90% of surfaces sampled [20] or more 
[21] potentially harbouring a DSB.

The two main in  vitro protocols used to study DSB 
susceptibility to physical and chemical disinfection 
are based on a succession of hydrated and dry phase of 
an inoculum deposited on surfaces, either using the 
CDC biofilm reactor [81] or sedimentation biofilm [82]. 
Based on these methods, DSB have been shown to be 
less susceptible to physical and chemical disinfection/
sterilisation. For example, the recovery of viable and 
culturable S. aureus from DSB after moist heat disinfec-
tion at 121  °C for 30  min was remarkable and differed 
from hydrated biofilms for which no bacteria were cul-
turable; dry heat sterilisation at 121  °C for 20  min pro-
duced < 2  log10 reduction in viability in S. aureus DSB 
[83]. The efficacy of liquid disinfection against DSB 
depends overall on mechanical removal, formulation, 
but also soiling. Ledwoch et  al. [84] showed that differ-
ent biocides, including benzalkonium chloride (< 0.5%), 
peracetic acid (250  ppm), NaDCC (1000  ppm), NaOCl 
(1000  ppm), in combination with wiping reduced effec-
tively (> 4  log10 reduction) a S. aureus DSB. However, 
when bacterial transfer from DSB post-disinfection wip-
ing was assessed, only a couple of commercially available 
products prevented bacterial transfer (direct transfer or 
transfer via gloves) [84]. Although wiping on its own can 
remove S. aureus DSB from surfaces [85], Parvin et  al. 
[86] showed that only a 1.4  log10 reduction in S. aureus 
DSB from surfaces could be achieved following 50 wip-
ing actions using a standardised wiping process. In con-
trast, only 1 wiping action was sufficient to obtain a 3 
 log10 reduction of planktonic S. aureus dried on surfaces 
[86]. In the absence of mechanical removal, DSB can be 
very resilient to disinfection. Using live/dead staining, 
Almatroudi et al. [87] demonstrated that some S. aureus 
in DSB survive exposure to 20,000  ppm chlorine which 
produced a > 7  log10 reduction in viability and a reduced 
biofilm biomass by > 95%. Still viable S. aureus were able 
to regrow. S. aureus DSB exposure (5 min) to formulated 
peracetic acid (Proxitane), or chlorine (Chlorclean) were 

not efficacious producing < 3  log10 reduction in viability 
in the absence of soiling [88]. With soiling, all activity was 
lost. However, another peracetic acid formulation (Sur-
fex) was shown to produce a > 6  log10 reduction in viabil-
ity in the presence of organic load. Hydrogen peroxide 
(Oxivir) had no activity against S. aureus DSB [86]. Using 
Bacillus licheniformis DSB, Centeleghe et al. [89] showed 
an average of 2  log10 reduction from surfaces from a 
range of disinfectant-wipes following 10 s wiping at 500 g 
pressure and 60 s post-wiping before neutralisation.

Whilst the multispecies complexity of hydrated bio-
films has been reported to protect susceptible bacteria 
from disinfection [9, 10, 50], the only DSB study to date 
did not report a protective effect of a less susceptible 
environmental bacterium (B. licheniformis) to S. aureus 
when exposed to disinfectants [89].

The mechanisms of DSB resistance to disinfection has 
not yet been widely studied, but considering the nature 
of DSB, low metabolism, desiccation and the presence of 
EPS are likely to contribute to the biofilm resistance to 
disinfection. Hu et  al. [20] showed environmental DSB 
with very thick exopolymeric substance (EPS). Likewise, 
S. aureus artificial DSB has been shown to be embedded 
in EPS [81, 82], although, based on scanning electron 
microscopy images, the amount of DSB produced using 
the same in vitro protocol depends on the bacterial spe-
cies [82, 89, 90].

Overall, EPS produced from DSB may be less than that 
of hydrated biofilms. DSB are likely to have a thickness of 
only tens of micron; approx. 30 μm for S. aureus DSB and 
24–47 μm for environmental DSB [81], which profoundly 
differ from hydrated biofilms. Even though, EPS plays an 
important role in protecting bacteria from desiccation 
[91, 92]. It has also been suggested EPS is a major DSB 
mechanim of resistance to disinfection [81]. Changes 
to the bacterial cell structure in S. aureus DSB, notably 
the thickness of the cell wall, has been associated with a 
decreased susceptibility to sodium hypochlorite [93].

Biofilm from drain in healthcare settings, 
a perpetual issue that needs addressing.
Biofilms on hydrated interfaces, such as sinks and taps, 
remain a problem in healthcare facilities [26]. There 
are numerous opportunities within plumbing systems 
throughout hospital buildings for bacteria to prolifer-
ate and form biofilms [94]. A main issue with sink traps 
and U-bends are that they are constantly hydrated, often 
humid and well protected environments. The steady sup-
ply of nutrients, seldom related to hand washing prac-
tices, and bacteria from workers hands and the disposal of 
various fluids, contribute to the development of microbial 
communities containing pathogenic organisms [95, 96]. 
The prevalence of multidrug resistant organisms within 
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sink systems has been well documented, with common 
hospital-acquired organisms such as carbapenem-resist-
ant Enterobacteriaceae [97]. P. aeruginosa is amongst one 
of the most commonly associated organisms, where base-
line rates of colonisation have been found greater than 
40% in all sinks in an intensive care unit [98]. Kotay et al. 
[99] have also documented the growth of E. coli up the 
sink unit from the P-trap to the strainer in 7 days, leading 
to droplet dispersal of the pathogen around the sink area, 
causing HAI concerns. Short stagnation times in sinks 
have also been shown to provide an opportunity for bio-
film development and stagnant water allows for dispersal 
of cells from the biofilm [100]. The splash zone of a sink 
also causes problems since surfaces and objects nearby 
can become contaminated with sink pathogens when the 
sink is used [101, 102].

Numerous studies have investigated the impact of anti-
microbial substances on resistance of biofilms formed in 
drain systems. There are many protocols and products to 
decontaminate sinks and drainage systems, but biofilms 
appear to regrow reasonably quickly after treatment. 
Ledwoch et al. [95] recreated a complex drain biofilm in 
a laboratory setting using environmental samples taken 
from U-bends. After treatment (3 doses for 15 min each) 
with commonly used disinfectants such as sodium dichlo-
roisocyanurate (NaDCC; 1000  ppm), sodium hypochlo-
rite (NaOCl; 1,000  ppm) non-ionic surfactant (< 5%) 
results displayed < 2.5  log10 reduction in biofilm formed 
in the section of the drain model, corresponding to the 
trap. In addition, bacterial bioburden in treated biofilm 
regrew to the same level as the untreated biofilm within 
4 days, but for the PAA treated sample. Similarly, Buchan 
et al. [103] used a hydrogen peroxide and NaOCl-based 
foam on environmental sink samples from ICU. As with 
Ledwoch et al. [95], the disinfectants reduced the bacte-
rial load, but biofilms were able to regrow within 7 days 
and reverted to pre-treatment levels. Unlike the findings 
presented above, a concentrated acetic acid formulation 
(20%) reduced CPE found in ICU sinks not only to lower 
than detectable levels, but also reduced patient acquisi-
tion of the pathogen [104]. Drain disinfection in hospital, 
although important to manage, needs to be practical in 
terms of treatment duration and safety. The regular use 
of products might be counterproductive as it may select 

for pathogenic species. In vitro studies have shown that 
prolonged use of quaternary ammonium compounds 
(QACs), resulted in the enrichment of Gram-negative 
species within the drain biofilm [105].

Biofilm and medical devices, a lesson from history
Medical devices and implants have changed the science 
of medicine but come with an increased infection risk 
from the placement of foreign objects inside the body 
[106]. Biofilms are implicated in a multitude of diseases 
including catheter-associated infections and surgical site 
infections (Table  1) [12]. Catheter-associated urinary 
tract infections (CAUTI) are the most common biofilm-
led infection from medical devices; approximately 150 
million people worldwide develop CAUTI every year 
[107].

As an implant or device enters the body, a film contain-
ing proteins will be produced around the object allowing 
for bacterial colonisation [108]. Once bacterial attach-
ment has taken place, biofilms will start to develop. Upon 
reaching maturity, biofilm raft or bacteria will start dis-
persing, some entering the bloodstream causing serious 
infection [109]. Infection will often occur a few months 
following surgery or implantation of a device, but may be 
recognized as long as 24 months after [110].

Biofilms residing on device and implant surfaces are 
difficult to treat effectively. Preventative measures are 
much more appropriate for preventing biofilm coloni-
sation. Antimicrobial coatings and surfaces have been 
developed to prevent biofilm formation. Although 
proven somewhat effective in the laboratory, in the natu-
ral environment microbial interspecies interactions pre-
sent an obstacle for effectiveness, design and evaluation 
of such coatings [114]. Devices such as ventilators and 
catheters have parts that are disposable and so do not 
require decontamination following patient use. Those 
parts that can be in contact with a patient are required to 
be cleaned and disinfected following hospital guidelines. 
In the UK, government guidelines request that health-
care workers should manually clean and disinfect using 
an approved wipe product or cloth and approved liquid 
product [115].

Biofilms commonly colonise endoscopes despite fol-
lowing disinfection guidelines [116, 117]. High-level 

Table 1 Most frequently associated biofilms with medical device/implant infection and their most common causative organisms

Biofilm/disease Causative species References

Catheter‑associated urinary tract infection (CAUTI) Escherichia coli most common including resistant strains, Enterobacter 
cloacae heavy biofilm producer, Klebsiella pneumoniae

[111, 112]

Central line‑associated bloodstream infection Gram‑positive organisms (coagulase negative Staphylococci, Enterococci, 
Staphylococcus aureus), Candida albicans

[113]

Surgical site infection (SSI) S. aureus, coagulase‑negative Staphylococci, Enterococcus, E. coli [5]
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disinfection is used for endoscope reprocessing, usu-
ally following a manual or/and enzymatic cleaning step. 
Infections from endoscopes arise either endogenously 
from the patient’s own gut microflora, or, exogenously 
from contaminated equipment [118]. The small channel 
diameters of endoscopes make cleaning difficult; bio-
films easily form on endoscopes’ lumens after sequential 
hydration and dehydration phases [119]. In accordance 
with international guidelines, it is essential that endo-
scopes are dried in a sterile air-drying cabinet and flushed 
with sterile air [120]. Drying is used to mitigate the risk 
of biofilm formation, as bacteria proliferate in wet envi-
ronments [119]. However, after decontamination pro-
cesses bacteria can remain within the device. Pajkos 
et al. [121] used scanning electron microscopy to identify 
bacteria embedded in biopsy channels from endoscopes 
taken from hospitals. The images show bacteria present 
in biofilms on the inside of the channels, suggesting cur-
rent cleaning procedures are inadequate [122]. Of note, 
the structure of the biofilm identified by imaging [122] is 
very similar to that of DSB [19, 21, 89].

Clinical studies have shown that it takes as little as 
30–60 days of use for biofilms to build up on endoscopes, 
whilst high level disinfection effectiveness might be lim-
ited [123]. Residual biofilm of P. aeruginosa, a common 
organism associated with endoscope infection, has been 
found to survive treatment with 4000  ppm of peracetic 
acid, largely over the concentration used for standard 
practices [124]. Other studies have shown that peracetic 
acid was effective in biofilms removal; however, when the 

drying process after disinfection was missed, regrowth 
of biofilms occurred within 48  h [125]. Heavy biofilm 
producers (such as B. subtilis) in addition to other bac-
teria (Micrococcus luteus and streptococci) have been 
recovered from automated endoscope washer disinfec-
tors using chlorine dioxide [52]. The vegetative form of 
the B. subtilis isolate was resistant to chlorine dioxide 
(0.03% for 60  min in the presence of organic load), but 
also to hydrogen peroxide (7.5% for 30  min) and per-
acetic acid (2.23% for 5 min) [52]. The ability of surviving 
bacteria from a high-level disinfection process to become 
resistant to unrelated disinfectants has previously been 
reported with Mycobacterium chelonae following the use 
of glutaraldehyde 2% [126]

Impact of biofilms for infection prevention 
and control
As presented above, biofilms are commonly found in 
the healthcare environment. They can harbour patho-
gens including multidrug resistant organisms (MDRO) 
and are responsible for HAI. Yet biofilms are difficult to 
control, and the use of cleaning and disinfection regimen 
is not  always effective, particularly for medical devices, 
where single us items may be preferred. Where appropri-
ate, the use of disinfectants is often sub-optimal against 
biofilms, resulting in high numbers of viable and cultur-
able bacteria. Each biofilm type presents a specific chal-
lenge for disinfection (Fig. 2).

With drain biofilms, apart from the documented 
lack of disinfectant efficacy, the challenge is biofilm 

Fig. 2 Biofilm type and location and associated challenges. Hydrated biofilms; dry surface biofilms; Semi‑hydrated biofilm. Semi‑hydrated biofilms 
are subjected to serial wet and dry phases, for example during device reprocessing
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regrowth [95, 103]. Whilst some disinfectants such as 
chlorine-based ones can also decrease biofilm mass, 
rapid regrowth is inevitable, and the species composi-
tion of the biofilm may remain the same. Yet in  vitro 
testing using a complex model has shown that the use 
of appropriate biocidal products may limit both surviv-
ing bacteria and regrowth [95]. Failing to control bio-
film regrowth will lead to sink contamination and the 
potential spread of pathogens from water splashing. 
Physical measures to reduce splashing exist as well as 
sink design to prevent placing items on the sink ledge 
[127], whilst common sense would refrain to place sink 
< 2 m from patient’s bed or sterile preparation area.

The first description of DSB [19] led to the rapid 
consideration of their potential importance for micro-
bial pathogens survival on dry environmental surfaces 
[128]. It is likely that DSB provides a mean for pathogen 
survival (including desiccation sensitive one) in a dry 
state in the environment, and act as a pathogen reser-
voir [26, 128]. In S. aureus, proteome analysis between 
DSB and hydrated biofilms showed differences in the 
up-regulation in DSB of proteins involved in pepti-
doglycan biosynthesis pathway related to cell-wall for-
mation and thicker EPS matrix deposition, which was 
hypothesised to contribute to DSB persistence on dry 
surfaces [129]. Biofilms are likely to play a role in bac-
terial persistence, even Gram-negative ones, in dry 
environments. Espinal and colleagues [91] showed that 
biofilm-forming strains of A. baumannii survived bet-
ter in surfaces than non-biofilm-forming ones. In addi-
tion, environmental studies describing the persistence 
of some pathogens, on surfaces in healthcare environ-
ment (reviewed in [26]) predate the first report of DSB 
[19].

The use of artificial DSB to measure the efficacy of 
cleaning and disinfection has provided useful informa-
tion as to the resilience of microorganisms embedded in 
DSB to these processes [22, 82, 83, 85, 88–90, 130]. The 
successive hydrated and dry phases to form these in vitro 
DSB over a 12-day period [82, 87] reflects the succession 
of wet and dry phases provided from daily and terminal 
cleaning/disinfection in hospitals [26]. The efficacy of 
surface cleaning/disinfection against DSB has been rec-
ommended to be based on both reduction in viability 
from surfaces and decreased or lack of microbial trans-
fer post-exposure [82, 84, 89, 90, 130], which principle 
originated from studies on pre-wetted antimicrobial 
wipes [131, 132] and is integral part of the ASTM2967-
15 antimicrobial wipe standard efficacy test [133]. Bac-
terial transfer, including via the medium of gloves, is 
particularly relevant with DSB where the surface has 
been exposed to cleaning or disinfection [22, 90, 134, 
135].

For medical devices, for which high-level disinfec-
tion is part of the reprocessing procedure, the presence 
of biofilms suggests that cleaning/disinfection protocols 
might be suboptimal [121]. Yet both hydrated biofilms 
and possible dry biofilms may be present and need to be 
effectively eliminated. Failure to do that might lead to 
bacterial growth during drying and storage of the device 
and increase the risk of HAI [119].

Conclusions and further considerations
Biofilms are present in healthcare settings in the form 
of hydrated biofilms or DSB. With the exception to date 
of DSB—for which the information is not yet availa-
ble—biofilms are associated with HAI. Yet the presence 
of DSB harbouring MDRO on surfaces is likely associ-
ated with persistence of pathogens in the environment 
and as such would impact HAI. There should be no 
doubt that biofilms need to be appropriately controlled 
although control measures may differ depending on the 
type of biofilms (Fig. 2). It is recommended for hydrated 
biofilm, such as drain ones, to investigate both a reduc-
tion in the microbial bioburden together with the time it 
takes for biofilm to regrow post-treatment [95]. This in 
essence will inform on the efficacy and duration of the 
treatment as well as how often the treatment needs to 
be applied. For DSB, mechanical removal together with 
disinfection have been shown to be efficacious, but infor-
mation on transfer post-intervention is providing infor-
mation on how safe the surface is. DSB can be disturbed 
following intervention and become transferable [22, 90, 
134]. Although biofilms can contribute to the failure of 
infection prevention and control procedures, they may 
not solely be responsible for that since other factors are 
pertinent to the efficacy of disinfectant products [136]. 
Education of stakeholders, including infection control 
professionals is thus paramount to understand the risks 
associated with biofilms, and to apply appropriate mitiga-
tions to prevent contamination and infections.
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