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Abstract 

Background:  Carbapenem-resistant Enterobacterales (CRE) is a global threat. Enterobacterales develops carbapenem 
resistance through several mechanisms, including the production of carbapenemases. We aim to describe the preva-
lence of Carbapenem-resistant Enterobacterales (CRE) with and without carbapenemase production and distribution 
of carbapenemase-producing (CP) genes in Thailand using 2016–2018 data from a national antimicrobial resistance 
surveillance system developed by the Thailand National Institute of Health (NIH).

Methods:  CRE was defined as any Enterobacterales resistant to ertapenem, imipenem, or meropenem. Starting 
in 2016, 25 tertiary care hospitals from the five regions of Thailand submitted the first CRE isolate from each speci-
men type and patient admission to Thailand NIH, accompanied by a case report form with patient information. NIH 
performed confirmatory identification and antimicrobial susceptibility testing and performed multiplex polymerase 
chain reaction testing to detect CP-genes. Using 2016–2018 data, we calculated proportions of CP-CRE, stratified by 
specimen type, organism, and CP-gene using SAS 9.4.

Results:  Overall, 4,296 presumed CRE isolates were submitted to Thailand NIH; 3,946 (93%) were confirmed CRE. 
Urine (n = 1622, 41%) and sputum (n = 1380, 35%) were the most common specimen types, while blood only 
accounted for 323 (8%) CRE isolates. The most common organism was Klebsiella pneumoniae (n = 2660, 72%), followed 
by Escherichia coli (n = 799, 22%). The proportion of CP-CRE was high for all organism types (range: 85–98%). Of all 
CRE isolates, 2909 (80%) had one CP-gene and 629 (17%) had > 1 CP-gene. New Delhi metallo-beta-lactamase (NDM) 
was the most common CP-gene, present in 2392 (65%) CRE isolates. K. pneumoniae carbapenemase (KPC) and Verona 
integron-encoded metallo-β-lactamase (VIM) genes were not detected among any isolates.

Conclusion:  CP genes were found in a high proportion (97%) of CRE isolates from hospitals across Thailand. The 
prevalence of NDM and OXA-48-like genes in Thailand is consistent with pattern seen in Southeast Asia, but differ-
ent from that in the United States and other regions. As carbapenemase testing is not routinely performed in Thai-
land, hospital staff should consider treating all patients with CRE with enhanced infection control measures; in line 
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Introduction
Antimicrobial resistance (AMR) is a global health prior-
ity considering its association with high morbidity and 
mortality and increased healthcare costs [1–3]. The bur-
den of AMR is growing worldwide with transmission 
often occurring in healthcare settings due to poor infec-
tion control practices and inappropriate use of antimi-
crobials. The threat of AMR is particularly concerning 
in low- and middle-income countries such as Thailand 
where AMR contributes to approximately 38,000 deaths 
per year and additional US$1.2 billion in healthcare costs 
[4]. Thailand’s AMR burden has increased over the past 
two decades, likely a result of excessive and inappropriate 
use of antimicrobials and poor sanitation [5–7].

Carbapenem-resistant Enterobacterales (CRE) are 
an especially concerning AMR threat because they are 
resistant to many last-resort antibiotics, making it dif-
ficult to treat and leading to high mortality rates. CRE 
are often the result of healthcare transmission and 
associated with risk factors such as previous antibiotic 
use, prolonged hospitalization, and medical device use 
[8–11]. CRE develops antibiotic resistance through sev-
eral mechanisms, including through the production of 
carbapenemases, enzymes that degrade carbapenem 
antibiotics. Evidence suggests distinct differences in the 
epidemiology of CRE with and without carbapenemase 
production. Carbapenemase producing CRE (CP-CRE) 
are more virulent and are associated with higher levels 
of antimicrobial resistance, worse outcomes, and more 
rapid spread, while noncarbapenemase-producing CRE 
(non-CP-CRE) have been associated with asymptomatic 
carriage and perhaps less person-to-person transmission 
[12–14]. For this reason, CP-CRE have been identified as 
an important target for prevention sometimes warrant-
ing enhanced infection control interventions [15].

Carbapenemase enzymes are encoded by genes on 
mobile genetic elements, such as plasmids, which are 
highly transmissible between organisms and increase the 
potential spread of resistance. There are several genes 
encoding different carbapenemases, including Kleb-
siella pneumoniae carbapenemase (KPC) which is the 
most common carbapenemase in the United States and 
New Delhi metallo-beta-lactamase (NDM) which was 
first identified in a traveler returning from India but has 
now spread worldwide. Others include Verona integrin-
encoded metallo-β-lactamase (VIM) and imipenemase 
(IMP) which are most prevalent in Southern Europe 
and Asia and oxacillinase-48 (OXA-48) which is most 

prevalent in the Mediterranean region, Europe, and India 
[16].

The National Antimicrobial Resistance Surveillance 
center, Thailand (NARST) which is managed by Thai-
land’s National Institute of Health (NIH), was established 
in 1998 and includes 92 hospital laboratories from all 
five regions of Thailand. NARST data show the overall 
percentage of K. pneumoniae isolates resistant to mero-
penem increased from 0.4% in 2000 to 6.5% in 2016 and 
the overall percentage of Escherichia coli isolates resist-
ant to meropenem increased from 0.6 to 1.6% during the 
same period [6]. In August 2016, with growing concerns 
about AMR and CRE burden and antimicrobial effective-
ness, the Ministry of Public Health of Thailand endorsed 
a National Strategic Plan on AMR to reduce the mortal-
ity, morbidity, and economic impact of AMR.

NARST contains limited information on resistance 
genes because resistance mechanism testing is not rou-
tinely performed at participating hospital laboratories. 
NIH established the Enhanced Incorporation of Global 
and National AMR (EIGNA) Surveillance System to 
understand the distribution of resistance genes and iden-
tify novel resistance genes among CRE in Thailand. We 
analyzed 2016–2018 EIGNA data to better understand 
the distribution of resistance genes and identify novel 
resistance genes among CP-CRE in Thailand.

Methods
EIGNA includes 25 of 92 hospital laboratories partici-
pating in NARST surveillance from all five regions of 
Thailand; 21 (84%) of the labs are regional, tertiary care 
hospitals (Table 3). These laboratories were chosen based 
on their history of timely and complete submission of 
NARST data, the presence of competent laboratory per-
formance based on external quality assessments and site 
visits, and a functional infection prevention and control 
(IPC) program.

Hospital laboratories performed Gram stains, cul-
tures, biochemical tests, and antimicrobial susceptibil-
ity testing (AST) using disk diffusion and/or E-test on 
routine clinical specimens from hospitalized patients. 
CRE was defined as any Enterobacterales isolate resist-
ant to ertapenem, imipenem, or meropenem according 
to CLSI M100-S26 standards [17]. Participating hospitals 
were instructed to submit the first CRE isolate from each 
specimen type and each patient admission to the NIH 
along with a case report form (CRF) containing patient 
demographics, admission date, discharge date, previous 

with CDC recommendation for enhanced infection control measures for CP-CRE because of their high propensity to 
spread.
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antibiotic exposure, patient comorbidities, and outcome 
of hospitalization.

NIH repeated AST using disk diffusion. E-test was 
done to confirm CRE for isolates that had discordant 
results. CRE isolates confirmed by NIH underwent mul-
tiplex polymerase chain reaction (PCR) to detect five car-
bapenemase-producing (CP) genes, including blaKPC, 
blaNDM, blaOXA-48-like, blaVIM, and blaIMP [18]. 
As colistin is a drug of last resort for serious infections 
due to multidrug resistant organisms, PCR testing was 
also done to detect blaMCR-1 (i.e., plasmid-mediated 
mobilized colistin resistance). Since hyperproduction of 
AmpC β-lactamase combined with altered membrane 
permeability can result in carbapenem resistance [12, 
19, 20], routine PCR testing for blaAmpC was started 
for CRE isolates in the middle of this surveillance period 
and included testing for some isolates from 2017 and all 
isolates from 2018. Isolates negative by PCR for the six 
targeted genes were tested using modified Carbapenem 
Inactivation Method (mCIM) [21] for carbapenemase 
production and with commercial AMR Direct Flow Chip 
Kit (Master Diagnostica, Seville, Spain) [22] to confirm 
the absence of targeted CP genes and the presence of any 
additional CP genes.

For isolates with evidence of carbapenemase pro-
duction but no CP gene identified, whole-genome 

sequencing was conducted by isolating DNA from over-
night cultures with a DNeasy Blood and Tissue kit (Qia-
gen, Hilden, Germany) and quantifying the extracted 
DNA using the Qubit dsDNA HS Assay Kit (Invitrogen), 
both according to the manufacturer’s protocols. Genomic 
libraries were generated with the QIAGEN® QIAseq FX 
DNA Library Kit (Qiagen, Hilden, Germany) follow-
ing to the manufacturer’s protocol. The Whole-genome 
sequencing (WGS) was carried out using the Illumina® 
MiSeq platforms to obtain 250-bp paired-end reads 
chemistry (Illumina, California, United States) according 
to manufacturer’s instructions. The 250-bp paired-end 
reads was de novo assembled using the CLC Genom-
ics Workbench 12.0.2 (Qiagen, Aarhus, Denmark) using 
defaults settings except that the minimum contig size 
threshold was set to 500 bp in length.

EIGNA data from September 2016 through August 
2018 were analyzed using SAS 9.4 (SAS Institute Inc., 
Cary, NC). Proportions of CP-CRE isolates among CRE 
isolates were calculated and stratified by specimen type, 
organism, and carbapenemase-producing gene. For 
the analysis of patient characteristics, isolate data was 
deduplicated by including CRF information from the 
first isolate submitted. However, for one patient whose 
first isolate was CP-CRE negative and subsequent iso-
lates were CP-CRE positive, the first CP-CRE isolate was 

4,296 Enterobacterales isolates

3,946 (93%) Carbapenem-Resistant 
Enterobacterales (CRE)*

350 isolates: not CRE

3,844 (97%) carbapenemase 
gene iden�fied by PCR

102 (3%) without carbapenemase 
gene iden�fied by PCR

95  Tested using mCIM test

89 CP-nega�ve by mCIM

6 (6%) CP-posi�ve by mCIM

7 contaminated or not viable

Fig. 1  Testing results of Enterobacterales surveillance isolates submitted, Thailand, 2016–2018.  *1 additional CRE isolate with no genotype results 
available was not included in the analysis
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included and prior non-CP-CRE isolates were excluded. 
Clinical characteristics were calculated for CP-CRE and 
non-CP-CRE patients and compared using the Wilcoxon-
Mann–Whitney test for continuous variables and chi-
square and Fisher’s exact tests for categorical variables.

Results
A total of 4296 presumed CRE isolates were submitted 
to NIH by participating hospital laboratories and 3946 
(92%) isolates from 3748 patients were confirmed by NIH 
as CRE [Fig.  1], with 224 patients having multiple CRE 

isolates of different specimen types or pathogens. Urine 
and sputum were the most common specimen types (41% 
from urine, 35% from sputum), while blood accounted for 
only 8% of all CRE specimens. K. pneumoniae (73%) and 
E. coli (21%) were the most common organisms among 
all confirmed CRE isolates [Table 1].

Of 3748 patients with confirmed CRE, 2368 (63%) were 
collected more than two calendar days after admission 
(suggesting healthcare onset [HO]), 2502 (67%) had anti-
biotic exposures during 14 days prior to specimen collec-
tion, and 885 (24%) died during hospitalization. For the 
3724 (99%) with information on age available, median age 
was 66 years (IQR: 52–77). Of the 3031 (80%) with infor-
mation on length of stay (LOS) available, median LOS 
was 20 days (IQR: 9–39). Of the 3318 (80%) with infor-
mation on duration from admission to specimen collec-
tion date available, median duration was 10  days (IQR: 
2–23) [Table 2].

Of 3,946 CRE isolates, 3,844 (97%) tested positive for 
at least one CP gene and the proportion of CP-CRE for 
all Enterobacterales species ranged from 89 to 100% 
[Table  1]. These CP-CRE isolates were submitted from 
25 hospitals across all five geographic regions of Thai-
land, with 21 of these hospitals (84%) having > 500 beds 
[Table 3], and the percentage of CRE isolates with a CP 
gene ranging from 94–100% across hospitals and 97–99% 
across all regions [Additional file 1: Table 1]. On univari-
ate analysis, there were no statistically significant differ-
ences between CP-CRE and non-CP-CRE patients with 
regard to age, gender, use of any antibiotic during the two 
weeks prior to culture, HO status, total length of hospital 
stay, length of stay before or after specimen collection, or 
death during hospitalization [Table 2].

The distribution of carbapenemase genes among 
these isolates can be found in Table 4. Of all 3946 CRE 
isolates, 2501 (63%) were positive for blaNDM and 

Table 1  Frequency of Carbapenem-resistant Enterobacterales 
(CRE) and Carbapenemase-producing (CP)-CRE isolates by 
specimen type and organism, Thailand, 2016–2018

Isolate characteristics No. CRE isolates 
(%)

No. CP-CRE 
isolates (%)

% of CRE 
with CP 
gene

Specimen type

 Urine 1622 (41%) 1567 (41%) 97

 Sputum 1380 (35%) 1351 (35%) 98

 Pus 437 (11%) 429 (11%) 98

 Blood 323 (8%) 320 (8%) 99

 Other normally sterile 
site

77 (2%) 75 (2%) 97

 Other 107 (3%) 102 (3%) 95

Organism

 Klebsiella pneumoniae 2888 (73%) 2814 (73%) 97

 Escherichia coli 825 (21%) 816 (21%) 99

 Enterobacter cloacae 123 (3%) 115 (3%) 93

 Citrobacter freundii 11 (< 1%) 11 (< 1%) 100

 Other organism 99 (3%) 88 (2%) 89

Total 3946 3844 97

Table 2  Characteristics of patients with and without a carbapenemase gene, Thailand, 2016–2018

** Wilcoxon-Mann–Whitney test used for numeric variables
*** includes only those where LOS ≥ 0 (44 where LOS total < 0; 101 where LOS before specimen collection < 0; 107 where LOS after specimen collection < 0)

Patient characteristic n (% or IQR) p value**

All CRE CP-CRE Non-CP-CRE

Median age (N = 3,724) 66 (52–77) 62 (52–77) 65 (45–79) 0.75

No. male (N = 3,748) 2263 (60) 2211 (61) 53 (54) 0.36

No. with any antibiotic 14 days prior (N = 3,748) 2502 (67) 2436 (67) 66 (67) 0.98

Median length of stay (LOS) (N = 3,031) 20 (9–39) 20 (9–39) 24 (11–38) 0.18

Median LOS before specimen collection*** (N = 3,318) 10 (2–23) 10 (1–23) 10 (3–24) 0.51

Median LOS after specimen collection *** (N = 2,968) 9 (4–19) 9 (4–19) 11 (4–19) 0.48

No. with healthcare onset (N = 3,748) 2368 (63) 2298 (63) 70 (71) 0.12

Death during hospitalization (N = 3,748) 885 (24) 864 (24) 21 (21) 0.57
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1892 (48%) were positive for blaOXA-48-like (48%). 
There were 634 (16%) isolates with coexistence of both 
blaNDM and blaOXA-48-like genes, seven (< 1%) iso-
lates with coexistence of both blaIMP and blaOXA-
48-like genes, and five (< 1%) isolates with coexistence 
of blaIMP and blaNDM. When stratified by organism, 
blaNDM remained the most common CP gene across 
all organisms, except in K. pneumoniae, which had a 
similar percentage of isolates with blaNDM (55%) and 
blaOXA-48-like (59%) genes. The highest proportion of 
blaNDM-positive isolates were among Citrobacter fre-
undii (n = 11, 100%) and E. coli (n = 776, 94%). E. cloa-
cae had the highest proportion of isolates positive for 
blaIMP (31, 25%). blaKPC and blaVIM genes were not 
detected among any of the isolates. Of the 102 isolates 
with no CP gene identified, the most common patho-
gen was K. pneumoniae (73, 72%). The distribution of 

CP genes by region is presented in Additional file  1: 
Table  1.Of the 102 isolates without a CP gene identi-
fied in the initial 5-target PCR, 95 isolates had a mCIM 
test done, six (6%) of which were mCIM positive, and 
51 were tested for blaAmpC, four (8%) of which were 
positive. Of the six mCIM positive isolates, one was 
positive for both mCIM positive and blaAmpC and was 
later found to have blaIMI by whole-genome sequenc-
ing. One mCIM positive isolate was also later found to 
have Non-Metalloenzyme Carbapenemase (blaNMC) 
and blaIMI genes by AMR Direct Flow Chip kit. The 
MCR-1 gene was identified in ten isolates, including six 
isolates that also had blaNDM and three isolates that 
also had blaOXA-48-like.

Discussion
The EIGNA surveillance system provides new informa-
tion about carbapenemase distribution across Thailand. 
While previous studies show that there is a high burden 
of CRE in Thailand [6, 7, 23], our analysis demonstrates 
a high prevalence of CP genes among CRE in Thailand, 
with 97% of CRE isolates submitted to EIGNA having 
a CP gene. This estimate is much higher than estimates 
from other countries, such as the United States and 
India, where 32% and 28% of CRE are CP-CRE [24, 25]. 
This is also higher than recent estimates from a smaller 
study in Thailand which found that 71% of 287 Entero-
bacterales isolates from Bangkok were CP-CRE [26]. 
While these different estimates may reflect differences in 
the populations being studied, we found CP-CRE isolates 
from all regions of Thailand and the proportion of CRE 
with a CP gene was similar across regions. Despite some 
prior evidence of increased mortality associated with CP-
CRE after adjusting for clinical factors [13], we did not 
identify a specific population at greater risk of CP-CRE 
based on demographics, prior antibiotic exposure, length 

Table 3  Characteristics of participating facilities with 
Carbapenemase-producing (CP)-CRE isolates, Thailand, 2016–
2018

Facility Characteristic Total no. facilities 
(%)N = 25

Region

 North 6 (24%)

 Northeast 6 (24%)

 East 3 (12%)

 Central 5 (20%)

 South 5 (20%)

Bed size

 251–500 4 (16%)

 501–750 13 (52%)

 751–1000 7 (28%)

 > 1000 1 (4%)

Table 4  Presence of carbapenemase* and Mrc1 genes in isolates by organism, Thailand, 2016–2018

* Not mutually exclusive: 634 had NDM and OXA and 7 had IMP and OXA, 5 had NDM and IMP, 6 Mcr1 and NDM, 3 Mcr1 and OXA-48-like
* No VIM or KPC

€p-value using chi-square or fisher exact test to compare presence of carbapenemase genes and MCR-1 across organisms

n (% of isolates by organism) P value€

Carbapenemase Gene Total
(N = 3946)

Organisms

Klebsiella 
pneumoniae
(N = 2659)

Escherichia coli
(N = 799)

Enterobacter 
cloacae
(N = 113)

Citrobacter freundii
(N = 12)

Other
(N = 102)

NDM 2501 (63) 1577 (55) 776 (94) 736 (59) 11 (100) 64 (65)  < .0001

OX-48-like 1892 (48) 1703 (59) 149 (18) 27 (22) 1 (9) 12 (12)  < .0001

IMP 97 (2) 46 (2) 1 (< 1) 31 (25) 0 (0) 19 (19)  < .0001

No CP Gene 102 (3) 74 (3) 9 (1) 18 (16) 0 (0) 1 (1)  < .0001

Mcr1 10 (< 1) 5 (< 1) 5 (1) 0 (0) 0 (0) 0 (0) 0.23
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of stay, or death, as there was no significant difference 
when comparing patients with CP-CRE and patients with 
non-CP-CRE. Yet, the low number of CP-CRE specimens 
from blood and sterile specimens reflects a low propor-
tion of invasive infections with high mortality.

The distribution of CP genes in Thailand also differs 
from that found in other parts of the world. The most 
common CP genes in Thailand were NDM (69%) and 
OXA-48-like (38%), regardless of organism. These results 
support other studies showing that NDM is the most 
common gene in South and Southeast Asia [27–30]. 
However, this differs from the United States where NDM 
is present in 3% of isolates and OXA-48-like genes are 
present in 65% of isolates [25, 30]. KPC is the most com-
mon CP gene in the United States, present in 87% of CP-
CRE isolates [25, 30], but was not present in any of these 
isolates from Thailand.

The U.S. Centers for Disease Control and Prevention 
recommends enhanced infection control measures spe-
cifically for CP-CRE compared to non-CP-CRE because 
of their high propensity to spread. However, testing for 
the presence of a CP gene is not routinely done in Thai-
land’s clinical laboratories and reference laboratory 
testing results are often delayed, hindering their use in 
guiding infection control measures. Given the high pro-
portion of CP- CRE, clinicians in Thailand that do not 
have access to genotyping or carbapenemase production 
testing should consider that any CRE isolate is likely to 
have a CP gene and use appropriate infection control pre-
cautions for all patients with CRE. Testing for specific CP 
genes is more difficult and less available than testing for 
the presence of any carbapenemase activity. While there 
is currently no evidence or recommendation about spe-
cial infection control measures associated with specific 
CP genes, information about CP genes can be useful to 
guide antimicrobial therapy. NDM is associated with lim-
ited treatment options. Newer combination drugs such 
as meropenem-vaborbactam and imipenem-relebactam 
are effective against KPC, but not NDM or OXA-48-like 
carbapenemases. Ceftazadime-avibactam is effective 
against both KPC and OXA-48-like carbapenemases, but 
not against NDM [31]. However the combination of cef-
tazidime-avibactam with aztreonam offers a therapeutic 
advantage against NDM, as well as being effective against 
KPC and OXA_48-like [32, 33]. The co-existence of mul-
tiple carbapenemase genes in the same isolate was fre-
quent but the clinical implication is not well understood 
and should be further investigated to determine whether 
these patients have poorer outcomes or should be prior-
itized for enhanced infection control efforts.

Limitations
There are several limitations to this study that restrict its 
generalizability. Participating sites were chosen based on 
microbiology capacity and surveillance performance to 
optimize data accuracy but may not reflect a nationally 
representative sample and gaps in reporting may have 
resulted in an underestimate of total CRE cases. Different 
hospital types and locations were included, but regional 
hospitals (82%), which provide tertiary care and likely 
have more severely ill patients, were disproportionately 
represented. Results may also have been biased by incon-
sistent culturing practices or laboratory testing at partici-
pating sites. For example, specimen collection and testing 
at hospital sites was left to the clinical discretion of each 
hospital or clinician and therefore not standardized. As a 
result, some clinicians may have collected samples only 
from patients with more severe conditions or those who 
did not respond to initial therapy with first-line antibiot-
ics. Additionally, ertapenem susceptibility testing was not 
performed at all sites; only 14 (17%) of 84 sites partici-
pating in NARST do ertapenem susceptibility testing. As 
a result, isolates resistant to only ertapenem, which are 
more likely to be non-CP-CRE, may not have been iden-
tified or included in the analysis [34, 35]. Whole-genome 
sequencing was only conducted on a subset of isolates 
because of resource accessibility and may have limited 
detection of additional CP genes.

Clinical data collected as part of the EIGNA surveil-
lance system was limited and did not include information 
about some risk factors or exposures (e.g., use of indwell-
ing medical devices, prior hospitalizations or healthcare 
exposures, underlying comorbidities) which may be asso-
ciated with CP-CRE. Outcome data was only reported 
for the hospitalization and did not include death after 
discharge.

Conclusion
We found that carbapenemase production is predomi-
nant among CRE across Thailand. The distribution of 
carbapenemase-producing genes and the prevalence of 
NDM and OXA-48-like genes in Thailand differs from 
that in the United States and other regions of the world 
but seems to be consistent with patterns demonstrated 
by the limited data from Southeast Asia. Our analysis 
demonstrated a high frequency of established healthcare 
risk factors and poor outcomes among patients with CP-
CRE. Efforts to strengthen clinical laboratory capacity 
for carbapenemase testing is important to improve early 
identification and appropriate response by guiding clini-
cal treatment and control measures. Given that current 
availability of carbapenemase testing results is limited, 
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all patients with CRE should be considered to have CP-
CRE and treated with appropriate use of infection con-
trol measures. Ongoing CRE surveillance is necessary to 
detect new, emerging resistance mechanisms, monitor 
CRE trends, and determine the effectiveness of control 
measures in preventing transmission.
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