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Abstract 

Background:  Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-
spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a 
catalyst for the development of antimicrobial resistance (AMR).

Objectives:  We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to 
quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differ‑
ences across hospital and geographic settings.

Methods:  We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 
2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-
CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection 
with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and 
geographic setting was also performed to elucidate any differences.

Results:  Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 
29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 
100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 
24% (95% CI 8–40%; n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1–0.6%; n = 8 studies: I2 = 78%), respectively. Among 
multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter bau-
mannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly 
reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these 
results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 
patients were infected with a resistant organism.

Conclusions:  During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied 
by hospital and geography although there was substantial heterogeneity. Given the variation in patient popula‑
tions within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to 
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Background
The pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) virus has been one of 
the most significant challenges of our time and has over-
whelmed healthcare systems worldwide [1]. Simultane-
ously, the rise in multi-drug resistant infections continues 
to threaten global heath through significant morbidity, 
mortality and global economic loss. Following the O’Neill 
review and recommendations in 2016 to respond to the 
antimicrobial resistance (AMR) crisis [1], important pro-
gress has been made. However, patient admissions to 
hospitals have contributed to and continue to increase 
the risk of health-care-associated infections and the 
transmission of multidrug-resistant (MDR) organisms. 
Recent evidence suggests that as a consequence of  the 
coronavirus disease 2019 (COVID-19)  pandemic [2], an 
increasing number of patients admitted to hospitals have 
been prescribed empirical antimicrobial therapy which 
may not always be appropriate [3–6], potentially increas-
ing the number of resistant infections globally.

While treatment of COVID-19 with antimicrobials 
is ineffective, there are several reasons why antimicro-
bial prescribing may exist [7, 8]: patients may present 
with symptoms similar to that of bacterial or other viral 
pneumonias, there may be suspected or confirmed co-
infections [4], and protocols and existing healthcare 
frameworks might suggest the use of antimicrobials [9]. 
While antimicrobial therapy in COVID-19 patients may 
be reasonable if bacterial or fungal infection is suspected, 
consideration for AMR and antimicrobial stewardship 
focused on supporting the selection of optimal empirical 
therapies and appropriate de-escalation or discontinua-
tion of antimicrobials when bacterial co-infection is pre-
sent or absent is important [7].

A growing body of evidence suggests AMR may 
be increasing following antimicrobial prescribing in 
COVID-19 patients10–13, but a quantification of the prev-
alence of AMR and relative proportions of associated 
pathogens within a systematic review has not been pub-
lished to date. Understanding the emergence of AMR in 
COVID-19 patients is essential. There is clear evidence to 
suggest that excess antimicrobial use in humans leads to 
antimicrobial resistant microbes that negatively impact 
humans, and AMR is described as one of the top ten 
greatest threats to global public health, food security, and 
development [11]. An important knowledge gap exists 
regarding the prevalence, and characteristics of bacterial 

and fungal co-infections, including potential AMR in 
patients with COVID-19.

We conducted a systematic review and meta-analysis of 
the published literature to address the specific research 
question: “What is the prevalence of AMR in co-infected 
COVID-19 patients?” Our objective was to identify and 
characterize the available literature by (1) reviewing 
COVID-19 patients with co-infections, (2) assessing the 
healthcare settings and geography (3) documenting anti-
microbial therapies prescribed including antibacterials 
and antifungals if available, and (4) estimating the pro-
portion of resistant organisms reported in the literature.

Methods
Search strategy and selection criteria
We conducted a systematic review following the Pre-
ferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) guidelines for reporting [see 
Additional file 1] [13]. The study protocol was registered 
with the PROSPERO database for systematic reviews: 
CRD42021227564.

Searches of MEDLINE, Embase, Web of Science (Bio-
SIS), and Scopus were completed for literature published 
from November 1, 2019 to May 28, 2021. These searches 
were restricted to human studies and publications in 
the English language. A separate search of medRxiv for 
unpublished manuscripts was also conducted to ensure 
the search was comprehensive. The search strategy was 
designed to capture original research articles with a 
focus on human studies involving confirmed COVID-19 
patients with co-infections that reported drug-resistant 
organisms. Reference lists from all articles included in 
the review were reviewed to identify additional studies. 
The complete search strategy is presented in Additional 
file 2.

Results from each database search were uploaded into 
Covidence [14], an online software platform for sys-
tematic reviews, which removed all duplicate articles. 
Title and abstract screening were divided among three 
authors (RMK, DAJ, DCJ) and conducted independently 
to identify potential articles for inclusion, with each arti-
cle requiring approval from at least two authors prior 
to moving to full-text review. Eligibility conflicts were 
resolved by a fourth author (SLL) who was not involved 
in the initial screening. Manuscripts were excluded if 
a duplicate was missed by Covidence, lack of resist-
ant organisms were reported, publication in a language 
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other than English, evaluation in non-COVID-19 patient 
populations, inappropriate study design (as listed below), 
inappropriate comparators or inappropriate outcomes 
such as antibiotic prescribing. The same process was 
applied for full-text screening. Studies, including case 
reports, cohort studies, case series, case–control studies, 
and conference proceedings, were included if antimicro-
bial resistant organisms were documented among human 
patients with confirmed COVID-19 requiring hospital 
care, accompanied by either a laboratory confirmed co-
infection, or an existing co-organism isolated from a site 
thought to be associated with infection as stated by the 
study authors. Editorials, commentaries, in vitro studies 
(non-clinical isolates, animal studies, mechanistic stud-
ies), reviews, and studies in which none of the patients 
had COVID-19 were excluded.

Data extraction was performed by the same three 
authors involved in study selection, and information was 
recorded relating to study details (author, geographic 
location, study design, sample size), demographics 
(healthcare setting, age, sex), clinical parameters (disease 
presentation, mechanical ventilation, comorbidities, anti-
microbials used; type, length) and microbiology (organ-
isms identified, method of identification, antimicrobial 
susceptibility testing method, antimicrobial resistance, 
definition of resistance), as available. Patient-level data 
were also collected if provided. Upon independent com-
pletion of the initial data extraction, articles were again 
divided among the three authors (RMK, DAJ, DCJ) and 
reviewed a second time to ensure accuracy and compre-
hensiveness of the extraction.

Given the lack of a standardized definition for co-infec-
tion or secondary infection, superinfection or coloniza-
tion across studies, the authors’ reporting of any type of 
co-infection or secondary infection was used. For pur-
poses of our study co-infection was defined as simultane-
ous infection with a virus, bacterial or fungal organism 
in addition to SARS-CoV-2 either at the time of presen-
tation or during the course of hospitalization. Similarly, 
given the lack of standardized definitions for AMR across 
all articles, we defined antimicrobial resistance as per 
authors’ discretion whereby microbiological investiga-
tions provided evidence of resistance, and whether or not 
specific guidelines or interpretative criteria such as Clini-
cal & Laboratory Standards Institute (CLSI) or Euro-
pean Committee on Antimicrobial Susceptibility Testing 
(EUCAST) were used.

Data analysis
The studies included in the review were assessed for 
risk of bias using the Joanna Briggs Institute (JBI) Criti-
cal Appraisal Tools (specifically the case report, case 
series, cross-sectional, and cohort study checklists) (see 

Additional file  3) [15]. Select questions from the QUA-
DAS-2 Tool [16], specifically, Domain 3: reference stand-
ard, were also used to assess the diagnostic methods 
for organism identification across all studies (see Addi-
tional file 4). These assessments were performed by three 
authors (RMK, DAJ, DCJ), with each article assessed by 
two authors for completion. Issues encountered while 
conducting the assessments due to unspecified study 
designs were resolved by discussion among the authors 
conducting the assessments, and the most suitable 
checklist was chosen for these studies.

Descriptive statistics including means and ranges were 
reported for continuous outcomes. Dichotomous out-
comes were reported as frequencies and proportions 
calculated on GraphPad Prism v8.2 (La Jolla, California, 
USA). Study-level analysis was reported either narratively 
(number of co-infecting organisms, number of co-infec-
tions, number of resistant co-infections, microbiologi-
cal identification and resistance reporting methods) or 
with a formal meta-analysis where appropriate. Using 
the ‘metaprop’ command within Stata 16 statistical soft-
ware (College Station, TX: StataCorp LLC), we calculated 
pooled prevalence estimates (with corresponding 95% 
confidence intervals (CIs)) of co-infection with resistant 
bacterial and fungal organisms separately using random 
effects models. We visualized all pooled estimates with 
forest plots and assessed between-study heterogeneity 
using the  I2 statistic, which indicates the percentage of 
variation among the studies that occurs as a result of het-
erogeneity rather than chance. Variation across all studies 
was categorised as low (I2 < 25%), moderate (I2  between 
50 and 75%), high (I2 > 75%), or no statistical heterogene-
ity (I2 = 0%). Given the variation in geographic and hos-
pital settings among included studies, we also conducted 
stratified meta-analysis by the following variables: ICU 
vs. non-ICU settings, COVID-specific ICU vs. regular 
ICU or other hospital setting, North America vs. Europe 
vs. Other, Europe vs. Asia vs. Other and Italy vs. Europe 
(excluding Italy) vs. Other.

Patient-level analysis was reported narratively (age, 
sex, number of co-infecting organisms, number of co-
infections, number of resistant co-infections, proportion 
of patients receiving antibiotic therapy, outcome) using 
descriptive statistics. Case reports, studies evaluating 
effectiveness of COVID-19 therapies such as tocilizumab, 
and those reporting MDR rates where patient-level data 
could not be interpreted were excluded (n = 12) for the 
narrative reporting.

Role of the funding source
The Antimicrobial Resistance—One Health Consortium 
is funded through the Major Innovation Fund Program 
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of the Ministry of Jobs, Economy, and Innovation (JEI), 
Government of Alberta, Canada.

Results
The search strategy identified 1331 records from MED-
LINE (n = 330), Embase (n = 296), Web of Science 
(n = 96), Scopus (n = 585), and an additional 24 records 
through medRxiv (Fig.  1). After removal of duplicates, 
1049 articles remained for title and abstract screening. 
Seventy-five articles were eligible for full-text screening 
of which 38 met inclusion criteria (Fig.  1). Thirty-seven 
articles were excluded due to missed duplicates (missed 
by Covidence) during the initial automated de-duplica-
tion process (n = 11), lack of resistant organisms reported 
(n = 10), inappropriate study design as listed in the Meth-
ods (n = 10), inappropriate comparator (n = 2), inappro-
priate outcomes such as antibiotic prescribing (n = 2), 
wrong language (n = 1) and non-COVID-19 patients 
(n = 1). Geographical origin of the 38 studies (Table  1) 
was as follows: Belgium (n = 2), China (n = 1), Egypt 
(n = 1), France (n = 3), Greece (n = 1), India (n = 2), Italy 
(n = 11), Iran (n = 3), Mexico (n = 1), Saudi Arabia (n = 1), 
Spain (n = 4), Switzerland (n = 1), Qatar (n = 1), United 
Kingdom (n = 2), and United States (n = 4). Twenty-
seven (71%) studies enrolled patients from the intensive 
care unit (ICU), whereas 6 (16%) studies enrolled patients 
from COVID-specific care units, and 5 (13%) studies had 
an unspecified setting. The following study designs were 
identified: retrospective cohort (n = 8), case series (n = 5), 
case report (n = 3), cross-sectional (n = 3), prospective 
observational (n = 1), prospective cohort (n = 3), retro-
spective observational (n = 12), and 3 case–control stud-
ies. Sample sizes ranged from 1 to 4267 patients. Twelve 
studies contained patient-level data for 112 individuals 
(Table 1). Patient characteristics in studies meeting inclu-
sion criteria are presented in Table 1. Risk of bias (Addi-
tional file 3) revealed the overall quality of the included 
studies. Majority of the studies were poor with limited 
reporting of microbiological detail including sample type, 
microbiological investigations, antimicrobial susceptibil-
ity testing methods, and definitions of resistance.

Twelve (32%) articles documented the use of matrix-
associated laser desorption ionization time of flight mass 
spectrometry (MALDI-ToF MS) as a method of organ-
ism identification, whereas 26 (68%) articles did not 
report microbiological investigations beyond specimen 
type (e.g., blood culture, respiratory culture etc.) and 
basic culturing (blood agar plate, chocolate agar plate 
etc.). Three studies had no description of microbiological 
investigations whatsoever (Table 1). Antimicrobial resist-
ance definitions varied across studies, with the majority 
of articles not explicitly defining resistance, hence the 
authors’ final interpretation of resistance per isolate was 

Fig. 1  PRISMA flow diagram
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used. One study reported multi-drug resistant categori-
zation according to the Germany Society for Hygiene and 
Microbiology [17]. Details of antimicrobial susceptibil-
ity testing varied across studies, with 13 (34%) articles 
documenting use of standardized protocols. Seven arti-
cles followed CLSI criteria whereas 6 articles followed 
the EUCAST interpretive criteria. Moreover, reporting 
of resistance mechanisms were poor, with many report-
ing both acquired and intrinsic resistance as resistance 
(Table 2).

In total, 16,602 (72%) of 23,086 patients had labora-
tory-confirmed SARS-CoV-2 infection. The proportion 
of co-infection with either bacterial or fungal organisms 
in those with confirmed SARS-CoV-2 ranged from 2.5 
to 100% across the 35 studies with exclusion of the sin-
gle case reports. (Table 2). There were no reports of para-
sitic co-infections. Moreover, 1 case of viral co-infection 
was captured by our search strategy. One study evaluated 
viral co-infections using the Cepheid Xpert Xpress Flu/
RSV, Panel Pneumonia Plus Film away and Panel RP2 
plus Film array and found no cases of viral co-infection in 
68 patients, whereas another detected metapneumovirus 
using the Biofire Film Array [18]. Two cohort studies [19, 
20] reported co-infection prevalence of 100%. In con-
trast, 8 studies [3, 10, 21, 22] (with sample sizes greater 
than 1000) reported prevalence of co-infection from 3.6 
to 13%.

The range of those co-infected with a resistant organ-
ism was 0.2 to 100%, with the 4 cohort studies [19, 20] 
contributing to the higher limit as previously mentioned 
(Table  2). Studies with larger sample sizes (> 1000) had 
resistant co-infection estimates ranging from 0.2 to 9%. 
In 15 studies where blood stream infections, acute res-
piratory distress syndrome or ventilator-associated pneu-
monia was reported, total resistant co-infections ranged 
from 1.7 to 100%. Seven studies reported both bacterial 
and fungal infections in COVID-19 patients. Notably, one 
study evaluated 61 patients who received tocilizumab, of 
whom 3 (5.0%) had resistant bacterial co-infections [23].

The pooled prevalence of co-infection with resistant 
bacterial and fungal organisms was 24% (95% CI 8–40%; 
n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1–0.6%; n = 8 
studies: I2 = 78%) respectively (Fig. 2sA and B) . Between-
study heterogeneity across bacterial and fungal resistant 
co-infections was high. Stratified meta-analysis by ICU 
setting among resistant bacterial infections revealed that 
the overall proportion of resistant infections amongst 
COVID19 patients was higher in the ICU setting (n = 19) 
[0.27 (95% CI 0.08, 0.46)] compared to the non-ICU set-
tings (n = 6) [0.14 (95% CI 0.08, 0.20)], although not 
significant (Fig.  3). Furthermore, comparison between 
regular ICU or hospital settings (n = 22) to COVID-
specific ICUs (n = 3) showed a similar trend ([0.25 (95% 

CI 0.07, 0.42)] vs. 0.19 [0.14 (95% CI 0.07, 0.22)]) (see 
Additional file 5). Moreover, a stratified analysis was per-
formed by geography whereby the prevalence of resistant 
bacterial infections in studies conducted outside Europe 
[0.19 (95% CI 0.14, 0.24)] was higher, particularly in Asia 
[0.21 (95% CI 0.15, 0.28)] and more prominent in North 
America [0.29 (95% CI: 0.00, 0.72)] although not signifi-
cant (Fig.  4, Additional files 6–7). Again, statistical het-
erogeneity remained high across all stratified analyses.

There were 1959 unique organisms identified across 
387 studies where data were available, with 569 (29%) 
organisms identified as resistant to one or more anti-
microbials (Table  3). The most common Gram-nega-
tive organisms resistant to at least one antimicrobial 
(regardless of intrinsic resistance) were Klebsiella pneu-
moniae (n = 169), Acinetobacter baumannii (n = 148), 
Pseudomonas aeruginosa (n = 65), Escherichia coli 
(n = 43), Enterobacter cloacae (n = 29), Stenotropho-
monas maltophilia (n = 24) and Serratia marcescens 
(n = 17). Wide-spread resistance mechanisms were docu-
mented including β-lactamases, carbapenemases, and 
extended spectrum β-lactamases (ESBLs). The most 
common resistant Gram-positive organisms included: 
methicillin-resistant Staphylococcus aureus (MRSA) 
(n = 132), coagulase-negative staphylococci (n = 30) and 
vancomycin-resistant Enterococcus (VRE) spp. (n = 10). 
More specifically, isolates of E. faecium were documented 
with high levels of vancomycin resistance. Resistance 
to at least one antifungal agent was also documented, 
including Candida auris (n = 10), C. albicans (n = 3) and 
unidentified Candida spp. (n = 5).

Clinical data for 112 patients were available from 12 
studies, of which sex and age were documented for 72. 
Fifty-two (72%) patients were male with a median age of 
65 years (range 25–86) (see Additional file 8). Sixty-five 
(80%) had co-morbidities present, with all but 3 patients 
receiving antimicrobials prior to identification and sus-
ceptibility testing of co-infecting organisms for which 
data were available. Sixteen (45%) patients received toci-
lizumab, 13 (20%) patients received a combination of 
steroids and tocilizumab and 37 (56%) received a com-
bination of other drugs. Sixty of 67 (90%) patients were 
receiving mechanical ventilation with a median duration 
of 34 days (range 24–46 days). All but 20 patients (colo-
nization) had a co-infecting organism as the cause of 
their disease presentation in addition to COVID-19. The 
most commonly identified organisms were: A. bauman-
nii (n = 38), K. pneumoniae (n = 29), C. auris (n = 11), P. 
aeruginosa (n = 7), MRSA (n = 3), Aspergillus fumiga-
tus (n = 3), A. flavus (n = 2), A. niger (n = 2), E. cloacae 
complex (n = 2) and MSSA (n = 2). S. maltophilia, K. 
oxytoca, Y. enterocolitica, P. aeruginosa and C. glabrata 
were documented in 1 patient each. Mixed infections 
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Table 2  Proportion of COVID-19 patients with resistant co-infections

First author Disease presentation Patients 
screened 
(No.)

SARS-CoV-2 
patients 
(No.)

Number of patients 
with co-infections 
(%)*

Number of patients with 
resistant co-infections 
(%)*

Chowdhary [31] BSI 596 596 15 (2.5%) 10 (1.7%)

Bogossian [44] COVID-19 75 69 24 (34%) 23 (33%)

Ramadan [33] COVID-19 260 260 28 (11%) 28 (11%)

Amarsy [45] BSI, Respiratory Distress 96 95 4 (45%) 4 (4%)

Perez [19] VAP, VAP with bacteremia, bacteremia, 
bone or soft tissue infections

34 17 17 (100%) 17 (100%)

Salehi [22] OPC 1059 1059 53 (5.0%) 2 (0.2%)

Cataldo [46] BSI 57 57 28 (49%) 9 (16%)

Posteraro [47] 79 M with complicated T2DM who had 
fever, necrotic and ulcerative lesions on 
the amputated leg stump, BSI

1 1 1 (100%) 1 (100%)

Nori [3] COVID-19 and subsequent positive 
microbiological results (within 30 days)

4267 4267 152 (3.6%) 25 (0.6%) †

Mahmoudi [48] COVID-19 patients assessed for bacterial 
infections

340 340 43 (13%) 31 (72%)

Li [49] Lung, BSI and UTI 1495 1495 102 (6.8%) 102 (6.8%)‡

Contou [18] All microbiological investigations 
performed within the first 48 h of ICU 
admission were reviewed

92 92 26 (28%) 7 (8%)§

Mo [22] COVID-19 patients who received Tocili‑
zumab

617 38 15 (39%) 11 (29%)

Garcia-Menino [8] Suspected or confirmed COVID-19 
Patients

62 62 7 (11%) 7 (11%)

Sharifipour [20] COVID-19 Patients 19 19 19(100%) 17 (89%)

Walpole [50] 33 M with fever for 3 days, abdominal 
pain for 1 day and one episode of 
vomiting

1 1 1 (100%) 1 (100%)

Razazi [10] Viral ARDS 3821 90 NA 21 (23%)

Guisado-Gil [17] Hospital-acquired Candidemia and MDR 
BSI

282 282 NA¶ NA¶

Montrucchio [51] COVID patients screened for carbapene‑
mase-producing K. pneumoniae

35 7 6 (86%) 6 (86%)

Mady [23] COVID-19 patients with ARDS receiving 
tocilizumab

61 61 12 (20%) 3 (5%)

Tiri [52] Patients admitted to ICU screened using 
rectal swabs or clinical cultures for CRE

62 62 17 (27%) 17 (27%)

Perrotta [54] 57 M admitted to hematology with K. 
pneumoniae NDM sepsis

1 1 1 (100%) 1 (100%)

Baiou [55] Critical COVID-19 Patients 1231 234 78 (6%) NA

Segrelles-Calvo [56] Adult patients admitted to ICU or RICU 215 215 7 (3%) NA

Martinez-Guerra [57] Severe COVID-19 patients 794 794 74 (11%) 127 (20%)††

Karruli [58] Critically Ill COVID-19 Patients 32 32 NA/32 16 (50%)

Gomez-Simmonds [60] Secondary CPE infections in COVID-19 
patients

3152 3152 NA 13 (0.4%)

Cultrera [61] COVID-19 patients admitted in ICU and 
non-COVID-19 ICU settings

NA NA 28 NA

Khurana [62] Severely ill COVID-19 patients 1179 1179 151 (13%) 105 (9%)

Posteraro [70] BSI in COVID-19 patients 293 293 46 (16%) 12 (5%)

Pascale [63]  > 18 years admitted to ICU 1151 1151 NA/1151 23 (1.8%)

Baskaran [64] COVID-19 patients in ICU 579 254 83 (33%) NA/254

Moretti [65] Patients with COVID-19 and VAP 39 39 21 (54%) 67%#

Grasselli [66] Patients with COVID-19 pneumonia 813 813 359 (44%) 38%**

Magnasco [67] Patients with severe COVID-19 118 118 NA/118 14 (12%)
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were documented in 5 patients: P. aeruginosa, C. auris; 
P. aeruginosa, C. auris, VRE; A. baumannii, K. pneumo-
niae in 2 patients; MRSA and C. albicans. All organisms 
acquired resistance to at least one antimicrobial except 
for 10 cases pertaining to (1) MSSA, (2) mixed infection 
with A. baumannii and K. pneumoniae, (3), K. pneumo-
niae, (4) A. fumigatus (n = 3), (5) A. flavus (n = 2), and 
(6) A. niger (n = 2). Overall, mortality was documented 
in 58 (52%) patients with all but 6 infected with resistant 
organisms.

Discussion
In this systematic review and meta-analysis, we analyzed 
data from over 16,000 patients with microbiologically 
confirmed COVID-19 admitted to hospitals between 
November 2019 and June 2021. While the prevalence of 
co-infections was highly variable based on sampling and 
setting within each of the included studies, we estimated 
a pooled prevalence of co-infection with resistant bacte-
rial and fungal organisms of 24% and 0.3% respectively. 
Further, of the 1959 unique isolates identified within 
the included studies, 569 (29%) were deemed resist-
ant. Despite the large body of literature describing the 
potential effects of the COVID-19 pandemic on AMR, 
this is the first study to summarize data surrounding 
AMR which may have major implications for current 
and future antimicrobial stewardship as well highlighting 
gaps in methods of organism identification and reporting 
of resistance. The concern for AMR during the first full 
year of the COVID-19 pandemic appears to be low based 
on our findings. However, with very few reports and 

poor-quality data, further research is warranted to bet-
ter understand the landscape of AMR during COVID-19. 
Additionally, as the pandemic is still ongoing there will 
be a need to re-assess these findings as further evidence 
emerges.

The risk of co-infection in patients with influenza has 
been well documented, with estimates ranging from 
2 to 65% [24]. Our study identified a SARS-CoV-2 co-
infection congruent with previously reported systematic 
reviews and large multi-center studies assessing antimi-
crobial usage that also captured the prevalence of bacte-
rial co-infection [6, 25]. The true prevalence of AMR is 
currently lacking in literature, and even prior to influenza 
or the recent COVID-19 pandemic, it has not been well 
described. A few studies have documented the prevalence 
of MRSA co-infections in patients with influenza, ranging 
from 20 to 48%; however other resistant organisms were 
not frequently reported [26–28]. Furthermore, reports of 
co-infections with antimicrobial-resistant Gram-negative 
organsims during influenza season ranged from 2.2% for 
carbapenems and up to 21% for fluoroquinolones, not 
necessarily from patients co-infected with influenza [29]. 
Moreover, inferences of antimicrobial usage could serve 
as a strong predictor for AMR [24]. In studies evaluating 
influenza-associated co-infections, antimicrobial usage 
ranged from 20 to 50% [6, 25]. During the initial stages 
of the COVID-19 pandemic, up to 60% of patients were 
prescribed antimicrobials [6, 25]. At the same time, a 
number of social distancing and public health measures, 
coupled with increased public adherence to mandates, 
reduction in travel and increased hand hygiene may 

Table 2  (continued)

First author Disease presentation Patients 
screened 
(No.)

SARS-CoV-2 
patients 
(No.)

Number of patients 
with co-infections 
(%)*

Number of patients with 
resistant co-infections 
(%)*

Bentivegna [68] Patients in COVID-19 Departments NA NA NA/NA 150/NA

Suarez-de-la-Rica [69] Mechanically ventilated critically ill 
COVID-19 patients

107 107 46 (43%) 17 (16%)

Kokkoris [42] BSI in COVID-19 patients 50 50 27 (54%) 17 (34%)‡‡

TOTAL 23,086 16,602

Abbreviations: BSI (blood stream infection), VAP (ventilator-associated pneumonia), OPC (oropharyngeal candidiasis), MDR (multi-drug resistant), T2DM (type 
II diabetes mellitus), UTI (urinary tract infection), ARDS (acute respiratory distress syndrome), CRE (carbapenem-resistant Enterobacteriaceae), RICU (Respiratory 
Intermediate Care Unit)
* Denominator: Patients with SARS-CoV-2
† 24 organisms resistant; no patient level data provided
‡ 159 organisms detected; no patient level data provided; however, all resistant
§ 7 organisms resistant to 3rd generation cephalosporins and amoxicillin-clavulanate, no patient level data
¶ Rates of MDR BSIs
# 67% of 27 organisms isolated were MDR, 1 was XDR
** 272/723 microbiologically confirmed hospital acquired infections were MDR
†† 19.3% (127/656) episodes of hospital-acquired infections demonstrated resistance
‡‡ 34% (17/50) were reported as extensively drug-resistant, pan-drug resistant or resistant



Page 11 of 18Kariyawasam et al. Antimicrobial Resistance & Infection Control           (2022) 11:45 	

A

B

Fig. 2  A Studies reporting resistant bacterial infections (n = 25); B studies reporting resistant fungal infections (n =85)
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have contributed to a decrease in spread [30]. Although 
our study did not explicitly capture antimicrobial usage 
or social and public health measures in place at the time 
of study, patient-level analysis revealed 95% of patients 
were prescribed antimicrobials prior or during admission 
to the hospital. Given the difficulty differentiating viral 
pneumonia from bacterial pneumonia, it is challenging 
to avoid unnecessary usage of antimicrobials until con-
firmation of SARS-CoV-2 is obtained. Given this, it is 
imperative to quantify true rates of AMR to inform the 
use of appropriate empiric therapies and to understand 
the types of resistant co-infections that occur in patients 
with COVID-19.

A large number of carbapenem-resistant A. bauman-
nii (CRAB) and multi-drug resistant C. auris was identi-
fied from some studies highlighting the urgent need for 
the development of newer and more robust antimicrobial 

agents [19, 31]. In addition, large numbers of Klebsiella 
pneumoniae (n = 169), MRSA (n = 132) and MDR Pseu-
domonas spp. (n = 65) infections were noted. A major-
ity of COVID-19 patients received azithromycin– a 
macrolide with known increasing resistance to both 
Gram-positive and Gram-negative infections. Globally, 
macrolides are one of the top 5 antimicrobial classes 
dispensed by pharmacies, with known increases in 
resistance. One study has suggested an increase in eryth-
romycin resistance in S. aureus (26 vs. 43%), which may 
be associated with high azithromycin use [32]. However, 
despite our study not being able to specifically capture 
resistance to azithromycin, there is the possibility of 
increases in macrolide resistance as a result the initial 
empiric therapy used during this pandemic.

A number of studies documented blood stream infec-
tions and ventilator-associated pneumonia co-infections; 
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Suarez−de−la−Rica
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Martinez−Guerra
Baiou
Gomez−Simmonds
Kokkoris
Subtotal  (I^2 = 99.9%, p<0.001)

Non−ICU Setting
Mahmoudi
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Study−specific Proportions
Fig. 3  Proportion of resistant infections among ICU and non-ICU settings
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however, it was hard to tease out the differences in co-
infecting organisms between these different populations. 
A few studies have reported respiratory co-infections 
with Haemophilus influenzae and S. aureus; however, our 
analysis only found one case of H. influenzae co-infection 
with very low rates of Streptococcus pneumoniae co-
infections [33]. Conversely, a large number of S. aureus 
bacteremia and candidemia were reported, the latter of 
which may have been a result of prolonged antimicrobial 
usage.

A large number of studies were conducted in ICU set-
tings, which numerically reported higher rates of AMR 
compared to non-ICU settings. Although driven by two 
cohort studies, the likelihood of AMR to be detected in 
much greater proportions in ICU settings is not uncom-
mon. Pre-COVID-19, patients admitted to ICU set-
tings are at an increased risk of acquiring infections, 

with a number of studies citing nosocomial infections in 
20–50% of ICU admissions [34–36]. Given the COVID-
19 pandemic, where a priori patients are given a combi-
nation of antimicrobial and immunosuppressive agents, 
it is unsurprising to find higher co-infection rates, and 
in particular, those of resistant nature, especially in 
patients who have been mechanically ventilated for long 
periods of time. Moreover, there are geographical dif-
ferences that increase the risk of acquiring AMR infec-
tions, particularly in areas of low- and middle-income 
countries, poor clean water and sanitation facilities, high 
movement of livestock and food products as well as lack 
of routine surveillance in these areas that contribute to 
the overall inflation of AMR [37]. Our study also demon-
strated slightly higher rates of AMR in settings outside 
of Europe, particularly Asia and some settings in North 
America. Surveillance programs, robust testing using 
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Fig. 4  Proportion of resistant infections among North America, Europe and other geographical settings
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Table 3  Co-infecting organisms and resistance profiles

Organism Number Proportion Resistant Resistance Phenotype

Gram-positives
Staphylococcus aureus 2 0 (0%) –

Methicillin-sensitive Staphylococcus aureus (MSSA) 104 0 (0%) –

Methicillin-resistant Staphylococcus aureus (MRSA) 132 132 (100%) Methicillin resistance

Coagulase-negative staphylococci (CNS) 99 30 Unknown resistance (24)

Vancomycin-resistant enterococci (VRE), unspecified 4 4 (100%) Vancomycin resistance

Enterococcus faecalis 29 1 (3%) High-level aminoglycoside resistance

Enterococcus faecium 33 6 (18%) Vancomycin resistance (3); high-level aminoglycoside resist‑
ance (3), ampicillin resistance (1)

Enterococcus casseliflavus/Enterococcus gallinarum 2 1 (50%)* Vancomycin resistance (1 – E. gallinarum)*

Enterococcus spp. 12 0 (0%) –

Streptococcus pneumoniae 15 3 (20%) Amoxicillin, amoxicillin/clavulanic acid, cefoxitin, gen‑
tamicin, erythromycin, clindamycin, piperacillin/tazobactam, 
trimethoprim/sulfamethoxazole (2); amikacin, ciprofloxacin, 
levofloxacin, cefotaxime, ceftriaxone, ceftazidime, cefepime 
(1), unknown resistance (1)

Streptococcus spp. 4 0 (0%) –

Clostridium difficile 7 0 (0%) –

Gram-negatives
Acinetobacter baumannii 218 148 (68%) Wide-spread resistance except to colistin (98); 26 isolates 

harbored OXA-23, 2 harbored NDM; Carbapenem resistance 
(4); extensively resistant (5), pan-drug resistant (3), unknown 
resistance (19)

Klebsiella pneumoniae 274 169 (62%) 26 (carbapenem-producing KPC), OXA-48 (7), ESBL (13), NDM 
(1), multi-drug resistant (23), Carbapenem resistance (13), 
KPC-2 (1), KPC-3 (1), unknown resistance (25), VIM (1)

Klebsiella oxytoca 5 2 (40%) ESBL (2)

Klebsiella aerogenes 4 0 (0%) –

Klebsiella spp. 9 0 (0%) –

Pseudomonas spp. 4 0 (0%) –

Pseudomonas aeruginosa 203 65 (25%) Unknown resistance (34), piperacillin/tazobactam (4), carbap‑
enems (18), MDR (6), cephalosporin resistance (1), XDR (1)

Serratia marcescens 18 17 (94%) Resistance to amoxicillin, amoxicillin/-clavulanic acid, 1st and 
2nd generation cephalosporins (including AmpC B-lactamase) 
with low level of resistance to amikacin, multi-drug resistant 
(7)

Escherichia coli 118 43 (36%) ESBL (2), AmpC resistance (1), multi-drug resistant (12), 
unknown resistance (18)

Stenotrophomonas maltophilia 60 24 (40%) Multidrug resistant (24)

Proteus mirabilis 5 0 (0%) –

Proteus putida 1 0 (0%) –

Haemophilus influenzae 7 0 (0%) –

Moraxella catarrhalis 1 0 (0%) –

Enterobacteriaceae, unspecified 5 0 (0%) –

Yersinia enterocolitica 1 1 (100%) Amoxicillin and amoxicillin/-clavulanic acid resistance

Enterobacter spp. 8 5 (63%) Imipenem resistance

Enterobacter aerogenes 8 8 (100%) Carbapenem-resistant Enterobacteriaceae (1), ESBL (1), AmpC 
B lactamase (6), unknown resistance (1)

Enterobacter cloacae 68 29 (43%) AmpC B lactamase (7), multi-drug resistant (18), NDM-1 (2)

Elizabethkingia meningoseptica 1 1 (100%) Multi-drug resistant (1)

Chryseobacterium gleum 1 1 (100%) Multi-drug resistant (1)

Citrobacter koseri 1 0 (0%) –

Mycoplasma pneumoniae 2 0 (0%) –
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standardized protocols and reporting; and importantly 
multimodal strategies focusing on the stringent use of 
antibiotics in combination with infection, prevention and 
control practices could enhance antimicrobial steward-
ship in certain settings, ultimately reducing mortality and 
morbidity, especially in patients with COVID-19. Recent 
studies have suggested the use of these multimodal strat-
egies can be very effective to limit the epidemic spread of 
resistant microorganisms [38, 39].

Identifying clinical and sociodemographic factors that 
increase a patients’ risk of developing such co-infections 
have been established and include: healthcare settings, 
socioeconomic status, prior antibiotic usage, and length 
of stay in a hospital setting. A priori identifying patients 
who are higher risk of developing MDR or XDR infec-
tions may improve overall prognosis and outcomes, 
especially in the context of SARS-CoV-2. Future studies 
that are prospective in nature with well-designed micro-
biological investigations would enhance our current 
understanding of AMR during COVID-19 and what is 
forthcoming.

Our study has several limitations, the largest being 
the heterogenous reporting of clinically significant iso-
lates causing co-infection versus secondary infection 
and clinically insignificant isolates found in coloniza-
tion and contamination. It is also unclear if identified 
co-infections were the cause of mortality as opposed 

to other causes of death such as immune dysregulation 
and cytokine storm. In addition, given the high risk of 
bias observed within our included studies, our findings 
may prove contrary if more rigorous studies with larger 
sample sizes were available or conducted in the future.

Furthermore, the number of true resistant co-infec-
tions is largely underestimated due to asynchronous 
sampling across studies and sites (or lack of ), inap-
propriate sampling due to administration of antibi-
otics prior to specimen collection as well as lack of 
appropriate AST in a number of studies beyond basic 
culturing [40–42]. Moreover, given the likelihood of 
COVID-19 upon initial examination, delay in other 
microbiological investigations in combination with 
empiric antimicrobial therapy mask the true prevalence 
of co-infections, let alone resistant co-infections. Taken 
together, our data, and many others, highlight a small 
subset of the true burden of co-infections and resist-
ant co-infections, which ultimately impact our under-
standing of disease progression regarding the timing 
of therapeutic failure due to resistance [43]. Prospec-
tive population-based studies incorporating robust ini-
tial and follow-up screening protocols can identify key 
drivers of resistance in co-infected COVID-19 patients, 
as well as robust microbiological methods including 
WGS that may pick up heteroresistance may add to our 

Table 3  (continued)

Organism Number Proportion Resistant Resistance Phenotype

Enterobacterales 113 34 (30%) Cephalosporin resistance (2); Carbapenem resistance (3), 
unknown resistance (29)

Bacteroides fragilis 2 0 (0%) –

Viral organisms
Metapneumovirus 1 0 (0%) –

Fungal organisms
Candida auris 11 10 (91%) Fluconazole resistance (10), Voriconazole non-susceptible (3); 

overall 3 multi-azole resistant (fluconazole + voriconazole), 7 
multi-drug resistant including 3 to 3 classes of drugs (azoles, 
amphotericin B and 5-flucytosine) and 4 resistant to 2 classes 
of drugs (azoles + 5-flucytosine and azoles + amphotericin B)

Candida albicans 88 3 (3%) Fluconazole and voriconazole resistance (3); caspofungin 
intermediate (2)

Candida dubliniensis 6 2 (33%) Fluconazole resistance (1), caspofungin resistance (1)

Candida parapsilosis 25 1 (4%) Fluconazole resistance

Candida glabrata 15 1 (7%) Pan-echinocandin resistance (1), caspofungin intermediate (7)

Candida spp. 22 5 (23%) Azole resistance (5); Echinocandin resistance(1)

Pichia kudriavzevii 1 1 (100%) Caspofungin and fluconazole resistance

Aspergillus fumigatus 3 0 (0%) –

Aspergillus flavus 7 0 (0%) –

Aspergillus niger 2 0 (0%) –

Other 73 20 (27%) Unknown resistance (9), ESBL (11)
* Intrinsic resistance
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understanding of the effects in which impact AMR, as 
well as rates.

More importantly, the varying procedures regarding 
microbiological identification and antimicrobial suscep-
tibility testing in addition to a lack of standardized AMR 
definition proved difficult when interpreting results. 
Studies where standardized procedures, such as CLSI 
or EUCAST, are applied would make data interpretation 
much more feasible and allow for potential stratification 
by patient, geography, or clinical factors in future studies. 
In our analysis, less than 50% of studies used well-defined 
interpretive criteria and guidelines such as EUCAST or 
CLSI. To add, some studies reported highly resistant 
organisms without resistance profiles, driving the over-
all rate of AMR down given lack of detail. To add, there 
is a lack of representation from many low- and middle-
income countries (LMICs) and smaller studies which 
introduce publication and selection bias in our analysis 
that may differ from articles captured from larger cen-
tres across Africa, Asia, Europe and North America. 
Lastly, meta-analyses were conducted using random 
effects models in light of known clinical heterogeneity 
by patient and geographic factors. Thus, the pooled esti-
mates should be interpreted with caution while also high-
lighting the need for more scientific rigour when it comes 
to reporting AMR, to truly tease out any differences that 
may translate to effective clinical and laboratory manage-
ment, as well as public health policy.

Conclusions
Overall, microbiologically confirmed AMR during the 
first 18  months of the COVID-19 pandemic was rela-
tively high among patients with bacterial co-infections. 
The most common resistance documented was in CRAB, 
MRSA, Klebsiella pneumoniae, and Pseudomonas aerugi-
nosa, although some C. auris isolates were also identified. 
Despite no demonstrative differences across hospital ICU 
settings and geography, further high-quality research is 
warranted to truly capture the prevalence of AMR during 
COVID-19 and beyond.
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