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Abstract 

Background Hospitals with their high antimicrobial selection pressure represent the presumably most important 
reservoir of multidrug-resistant human pathogens. Antibiotics administered in the course of treatment are excreted 
and discharged into the wastewater system. Not only in patients, but also in the sewers, antimicrobial substances 
exert selection pressure on existing bacteria and promote the emergence and dissemination of multidrug-resistant 
clones. In previous studies, two main clusters were identified in all sections of the hospital wastewater network that 
was investigated, one K. pneumoniae ST147 cluster encoding NDM- and OXA-48 carbapenemases and one VIM-
encoding P. aeruginosa ST823 cluster. In the current study, we investigated if NDM- and OXA-48-encoding K. pneumo-
niae and VIM-encoding P. aeruginosa isolates recovered between 2014 and 2021 from oncological patients belonged 
to those same clusters.

Methods The 32 isolates were re-cultured, whole-genome sequenced, phenotypically tested for their antimicrobial 
susceptibility, and analyzed for clonality and resistance genes in silico.

Results Among these strains, 25 belonged to the two clusters that had been predominant in the wastewater, while 
two others belonged to a sequence-type less prominently detected in the drains of the patient rooms.

Conclusion Patients constantly exposed to antibiotics can, in interaction with their persistently antibiotic-exposed 
sanitary facilities, form a niche that might be supportive for the emergence, the development, the dissemination, and 
the maintenance of certain nosocomial pathogen populations in the hospital, due to antibiotic-induced selection 
pressure. Technical and infection control solutions might help preventing transmission of microorganisms from the 
wastewater system to the patient and vice versa, particularly concerning the shower and toilet drainage. However, a 
major driving force might also be antibiotic induced selection pressure and parallel antimicrobial stewardship efforts 
could be essential.
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Introduction
Antibiotic resistance is a major global concern, a complex 
public health issue and is accelerated by improper use of 
antibiotics as well as a growing population and increased 
networking and travelling. It depends on many intercon-
nected factors and is far from limited to the clinical setting 
[1–3]. Resistance is usually acquired through the uptake of 
resistance genes by bacterial conjugation or other horizon-
tal transmission pathways, spontaneous mutation of genes, 
upregulation of efflux pumps or intrinsic resistance genes, 
which subsequently allow the spread of resistant clones by 
vertical propagation [4]. After administration, antibiotics 
and their metabolites are released through environmen-
tal matrices, such as the sewage system, and exert selec-
tion pressure on the bacteria in this environment, favoring 
the occurrence of the mechanisms described above, mul-
tiplying resistance in the environment [1, 5–8]. Among 
antibiotic-resistant bacteria, carbapenemase-encoding 
Gram-negative bacteria are currently the most critical 
microorganisms [9, 10]. Carbapenems are antibiotics of 
last resort and administered in life-threatening infections 
caused by Gram-negative bacteria. Because of the large 
number of high-risk patients in hemato-oncology depart-
ments, these only intravenously administered substances 
are used there to an inordinately high extent, and as a 
result are released in excessively large quantities into the 
same sanitary facilities. Such concentrations were found to 
be in therapeutic concentrations [11, 12]. Because of this 
massive use of last-resort antibiotics, these highly resistant 
and critical bacteria are spread primarily through hospital 
wastewater, as opposed to municipal wastewater or agri-
cultural process water [13]. Furthermore antibiotic resist-
ant bacteria in wastewater are often associated with the 
ability to form biofilms in which they are able to survive 
even when confronted with high levels of antibiotics or 
disinfectants [14].

Klebsiella pneumoniae and Pseudomonas aeruginosa 
are two of the most important opportunistic and nosoco-
mial pathogens worldwide and are known for the ability 
to produce biofilms to escape treatment with antibiotics 
[3, 15, 16]. In this study, we compared NDM and OXA-
48 encoding K. pneumoniae and VIM encoding P. aer-
uginosa isolates recovered from clinical specimens of 
patients in oncology wards of a tertiary care center to the 
highly resistant strains that most prominently colonized 
patient bathrooms or were recovered from different 
sampling points of the same sewer system. Environmen-
tal K. pneumoniae ST147 and P. aeruginosa ST823 were 

analyzed when encoding the mentioned carbapenemases 
[17]. K. pneumoniae ST147 is a well-known high-risk 
clone that likely emerged in the 1990s and swiftly became 
a prominent global pathogen [18–20]. Different ST147 
clusters are associated with different carbapenemases 
[18]. On the other hand, P. aeruginosa ST823 is mostly 
associated with blaVIM and only few publications exist 
[21–23]. Reports of this strain in Europe are limited [17, 
24].

Methods
Isolates
In the period under study Gram-negative bacterial path-
ogens recovered from clinical specimens were routinely 
identified via MALDI-TOF MS (VITEK MS, Biomerieux, 
Marcy-l’Etoile, France) and susceptibility-tested with the 
VITEK 2 system (Biomerieux, Marcy-l’Etoile, France). 
Carbapenem-resistant K. pneumoniae and P. aeruginosa 
isolates, or such with an unusual carbapenem-suscepti-
bility profile (ertapenem/imipenem/meropenem) were 
routinely analyzed for the presence of common resist-
ance genes, using the Allplex Entero-DR Assay (Seegene, 
Seoul, South Korea).

All VIM-encoding P. aeruginosa isolates and all NDM- 
and OXA-48-encoding K. pneumoniae isolates recovered 
from patients of oncology wards between September 
2014 and November 2021 were traced in the labora-
tory information system, thawed and sub-cultured twice 
on Columbia 5% sheep blood agar (Becton Dickinson, 
Heidelberg, Germany) prior to testing and DNA extrac-
tion. Only first isolates were selected for each pathogen–
patient combination. The environmental strains used for 
comparison had been isolated between Nov. 2016 and 
Sept. 2018 [17]

Susceptibility testing
Antimicrobial susceptibility of all isolates after re-culti-
vation from cryo stocks was determined thrice by broth 
microdilution. Susceptibility tests were employed strictly 
according to the manufacturer’s instruction. From each 
isolate, a bacterial suspension in 0.9% saline solution was 
prepared. The suspension was adjusted to a McFarland 
value of between 0.48 and 0.52 using a DensiCHEK plus 
photometer (bioMerieux, Marcy-l’Etoile, France). For 
broth microdilution, Micronaut-S MDR MRGN-Screen-
ing MIC-Plates (Merlin, Bornheim, Germany) were uti-
lized (tested antibiotics are listed in the legend of Table 2 
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in the “Results” section). Tests were performed with 
Mueller–Hinton broth (Merlin, Bornheim, Germany) 
and read with a BioTek ELx808 Absorbance Microplate 
Reader (now: Agilent Technologies Inc., Santa Clara, 
CA, USA). MICs were interpreted according to EUCAST 
2022 v12 breakpoints (version 01.01.2022) for Enterobac-
terales and Pseudomonas, respectively.

Whole genome sequencing
Highly purified DNA was extracted from all strains using 
the column-based DNeasy UltraClean Microbial Kit 
(Qiagen GmbH, Hilden, Germany). The isolation was 
performed according to the manufacturer’s instructions. 
Obtained DNA was qualitatively and quantitatively eval-
uated using the NanoDrop OneC from Thermo Fisher 
Scientific Inc. (Waltham, MA, USA). Dual-indexed Illu-
mina sequencing libraries were constructed from each 
sample using the Illumina Nextera XT DNA Library 
Preparation Kit, pooled, and sequenced on the Illumina 
MiSeq platform with the Illumina MiSeq Reagent Kit 
v3, 600 cycles (all three: Illumina, San Diego, CA, USA). 
All steps were carried out following the manufactur-
er’s instructions. Raw reads have been uploaded to the 
Sequence Read Archive (SRA); accession PRJNA845217.

Assembly and genome analysis
Genome assembly and analysis were carried out inde-
pendently in two different ways. On the one hand, 
paired-end reads were trimmed and filtered with BBDuk 
Trimmer with a Q value of 20 and de novo assembled 
using Geneious Prime (software version 2020.1 Biomat-
ters, Auckland, New Zealand). Analysis of the de novo 
assembled contigs was then performed with online tools 
of the CGE-server, ResFinder-4.0 (https:// cge. cbs. dtu. 
dk/ servi ces/ ResFi nder/) and PlasmidFinder-2.0 (https:// 
cge. cbs. dtu. dk/ servi ces/ Plasm idFin der/) [25–28] and 
the AMRFinderPlus v3.10.24 (https:// www. ncbi. nlm. 
nih. gov/ patho gens/ antim icrob ial- resis tance/ AMRFi 
nder/) (with its according NCBI reference databases of 
04-04-2022 [29]), which were used to identify the pres-
ence of antimicrobial resistance genes [30]. In addition 
to BLASTX, nucleotide sequences were translated into 
amino-acid sequences to identify corresponding proteins 
with ALLELEX and EXACTX. Genes with insertions 
for a stop codon were found with INTERNAL_STOP. 
POINTN considered strain-specific point mutations and 
refer to the majority of mentioned stress factors. PAR-
TIALX took gene fragments with incomplete reference 
sequence into account. The minimum coverage value 
for PARTIALX was set to 60%. Only results with > 90% 
identity and > 90% coverage were accepted. On the other 
hand, genomes were assembled and analyzed with  ASA3P 
v1.3.0 [31].

Clustering
For epidemiological clustering Ridom SeqSphere + (ver-
sion 6.0.2) (Ridom; Münster, Germany) (http:// www. 
ridom. de/ seqsp here) [32] was used. K. pneumoniae sensu 
lato was employed as cgMLST template for the K. pneu-
moniae strains and the cgMLST template for P. aerugi-
nosa was used for the P. aeruginosa strains (www. ridom. 
de/ seqsp here/u/ Task_ Templ ate_ Sphere. html). Minimum 
spanning trees were calculated after ignoring pairwise 
missing values and after exclusion of genes that were pre-
sent only in the template strain.

Phylogenetic analysis
Raw sequencing reads for both K. pneumoniae and P. aer-
uginosa isolates were processed using  ASA3P v1.3.0 [30]. 
SNP-based maximum-likelyhood phylogenetic trees were 
calculated with FastTree within  ASA3P calculating 100 
bootstraps using isolates CNK1 and A15448 [17] as refer-
ence genomes for the sets, respectively.

All data relevant to the study are included in the arti-
cle or uploaded as Appendix. The precise source of each 
environmental sample can be located in the correspond-
ing publication [17]. Environmental samples were col-
lected in approximately equal quantities from drains 
of sinks, toilets, and showers of hospital rooms in the 
hemato-oncological ward, from the wastewater of the 
hemato-oncological clinic, and wastewater sampling 
locations downstream of it.

The ethics committee of the University Hospital Bonn con-
firmed that no ethics approval was required for this study.

Results
Isolate and patient information
From September 2014 until November 2021, twenty-two 
VIM-encoding P. aeruginosa isolates and ten NDM- and 
OXA48-encoding K. pneumoniae isolates from patients 
of the oncology clinic were included into this study. Typ-
ing revealed that the majority of P. aeruginosa isolates (17) 
belonged to ST823; two belonged to ST235, another two 
to ST111, and one to ST233 (see Table 1). All but two K. 
pneumoniae isolates (which belonged to ST78) belonged 
to ST147. In the majority of patients (18/32), the isolates 
were first detected after more than four weeks of hospi-
talization. In half of the patients (16/32), the isolates were 
obtained from stool samples. All but one, K. pneumoniae 
ST147 isolates, were recovered from the same ward.

Clustering
Fourteen sequenced P. aeruginosa ST823 isolates, fell 
into two different groups as clustering showed (cluster 
distance threshold was set to 12) when clustered with 
environmental isolates from 2016 to 2018 from a study 

https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
http://www.ridom.de/seqsphere
http://www.ridom.de/seqsphere
http://www.ridom.de/seqsphere/u/Task_Template_Sphere.html
http://www.ridom.de/seqsphere/u/Task_Template_Sphere.html
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Table 1 General patient information of genotyped VIM-encoding P. aeruginosa isolates (CVP) (above) and NDM- and OXA48-encoding 
K. pneumoniae isolates (CNK) (below)

Patient Age Year Ward LOS
Previously 

in ICU
Localization Species

Sequence 

type
Isolate

1 50–60 2015 A 30 Yes Stool P. aeruginosa 823 CVP1

2 60–70 2015 B 13 No Stool P. aeruginosa 111 CVP2

3 30–40 2015 B 17 No Blood P. aeruginosa 233 CVP3

4 70–80 2015 C 36 – Skin swab P. aeruginosa 235 CVP4

5 60–70 2015 C 17 – BAL P. aeruginosa 111 CVP5

6 60–70 2016 C 80 – Urine P. aeruginosa 823 CVP6

7 50–60 2016 A 2 No TS P. aeruginosa 823 CVP7

8 50–60 2016 C 26 – Stool P. aeruginosa 823 CVP8

9 20–30 2016 B 48 No Stool P. aeruginosa 823 CVP9

10 70–80 2016 A 8 No Stool P. aeruginosa 823 CVP10

11 60–70 2016 B 57 No Stool P. aeruginosa 823 CVP11

12 50–60 2016 C 17 – TS P. aeruginosa 823 CVP12

13 60–70 2017 A 324 Yes Stool P. aeruginosa 823 CVP13

14 70–80 2017 A 105 Yes Stool P. aeruginosa 823 CVP15

15 60–80 2017 C 101 – TS P. aeruginosa 823 CVP16

16 <20 2017 D 180 No Wound P. aeruginosa 823 CVP17

17 50–60 2018 B 99 No Inguinal swab P. aeruginosa 823 CVP18

18 20–30 2019 A 22 No Stool P. aeruginosa 235 CVP19

19 70–80 2020 E 1 No Anal swab P. aeruginosa 823 CVP23

20 70–80 2020 D 70 No Stool P. aeruginosa 823 CVP24

21 40–50 2021 A 80 No Stool P. aeruginosa 823 CVP25

22 60–70 2021 A 104 No Urine P. aeruginosa 823 CVP27

23 80–90 2017 B 1 No Stool K. pneumoniae 147 CNK1

24 40–50 2017 B 59 Yes Stool K. pneumoniae 147 CNK2

25 60–70 2017 C 22 – Stool K. pneumoniae 147 CNK3

26 60–70 2017 F 2 No Urine K. pneumoniae 78 CNK4

27 50–60 2018 B 12 No Stool K. pneumoniae 147 CNK5

28 70–80 2020 B 65 Yes Wound K. pneumoniae 147 CNK6

29 70–80 2020 B 1 No Throat swab K. pneumoniae 147 CNK7

30 70–80 2021 B 182 No Stool K. pneumoniae 147 CNK8

31 50–60 2021 C 65 – Throat swab K. pneumoniae 78 CNK9

32 70–80 2021 B 44 Yes Urine K. pneumoniae 147 CNK10

LOS: Length of Hospital Stay in days, previous to the date on which the positive sample was collected. Rows are color-coded according to isolate sequence type for 
better visualization, P. aeruginosa ST823 cluster in light blue, P. aeruginosa ST235 cluster in purple and K. pneumoniae ST147 cluster in red
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on hospital drains and wastewater [17] (see Fig.  1). 
Three out of the four environmental isolates in cluster 
B, which was the cluster with the predominant number 
of clinical isolates, had been isolated from the drains 
of patient rooms. Of the two sequenced P. aeruginosa 

ST235 isolates, CVP4 did not cluster with environ-
mental isolates but CVP19 was closely related to two 
environmental isolates (see Fig. 1). All eight sequenced 
K. pneumoniae ST147 isolates were closely related to 
each other and to the environmental isolates, forming 

Fig. 1 VIM-encoding P. aeruginosa ST823 cluster in light blue, VIM-encoding P. aeruginosa ST235 cluster in purple, and NDM- and OXA48-encoding 
K. pneumoniae ST147 cluster in red, as minimum spanning tree, respectively from top to bottom. The lines and numbers show the number of allele 
differences between isolates
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Fig. 2 SNP-based maximum-Likelyhood trees of K. pneumoniae ST147 and P. aeruginosa ST823 isolates (100 bootstraps). Clinical isolates are marked 
in light blue and red for P. aeruginosa and K. pneumoniae, respectively
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Fig. 3 Antibiotic resistances profile as predicted by the  ASA3P pipeline based on CARD annotations for P. aeruginosa ST823 and K. pneumoniae 
ST147 isolates. Colored circles refer to the isolate likely being resistant to the respective substance class, while empty circles refer to the isolate likely 
being susceptible to it
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Table 2 Phenotypical susceptibility of P. aeruginosa (above) and K. pneumoniae (below) isolates determined by broth microdilution

CIP LVX AMK CST CHL FOF TGC SXT PIP TZP CTX CAZ CAA CTA IPM MEM TMO

CVP1 > 2 > 2 32 2 > 16 32 > 4 > 4/76 > 16 16/4 > 2 < = 1 < = 1/4 > 8/4 > 8 32 > 128

CVP2 > 2 > 2 > 32 < = 1 > 16 > 64 > 4 > 4/76 > 16 64/4 > 2 32 16/4 > 8/4 > 8 64 > 128

CVP3 > 2 > 2 > 32 2 > 16 64 > 4 > 4/76 > 16 > 64/4 > 2 64 > 16/4 > 8/4 > 8 > 128 > 128

CVP4 > 2 > 2 < = 4 < = 1 > 16 32 > 4 > 4/76 > 16 > 64/4 > 2 64 > 16/4 > 8/4 > 8 64 > 128

CVP5 > 2 > 2 > 32 < = 1 > 16 > 64 4 > 4/76 > 16 64/4 > 2 16 8/4 > 8/4 > 8 32 > 128

CVP6 > 2 > 2 32 2 > 16 64 > 4 > 4/76 < = 8 8/4 > 2 4 4/4 > 8/4 > 8 16 128

CVP7 > 2 > 2 32 < = 1 > 16 64 2 > 4/76 > 16 8/4 > 2 8 8/4 > 8/4 > 8 32 128

CVP8 > 2 > 2 16 2 > 16 < = 16 > 4 > 4/76 16 8/4 > 2 4 4/4 > 8/4 > 8 64 128

CVP9 > 2 > 2 16 2 > 16 64 > 4 > 4/76 16 16/4 > 2 4 4/4 > 8/4 > 8 16 128

CVP10 > 2 > 2 > 32 < = 1 > 16 < = 16 > 4 > 4/76 > 16 > 64/4 > 2 4 4/4 > 8/4 > 8 128 > 128

CVP11 > 2 > 2 16 < = 1 > 16 32 > 4 > 4/76 > 16 > 64/4 > 2 8 8/4 > 8/4 > 8 32 > 128

CVP12 > 2 > 2 > 32 < = 1 > 16 64 4 > 4/76 > 16 > 16/4 > 2 8 8/4 > 8/4 > 8 16 128

CVP13 > 2 > 2 < = 4 < = 1 > 16 32 2 > 4/76 > 16 64/4 > 2 16 8/4 8/4 > 8 32 > 128

CVP15 > 2 > 2 > 32 2 > 16 64 > 4 > 4/76 16 16/4 > 2 16 16/4 > 8/4 > 8 64 128

CVP16 > 2 > 2 < = 4 < = 1 > 16 < = 16 > 4 > 4/76 > 16 32/4 > 2 8 < = 1/4 < = 1/4 > 8 16 128

CVP17 > 2 > 2 < = 4 < = 1 > 16 64 2 > 4/76 < = 8 8/4 > 2 8 8/4 8/4 > 8 32 128

CVP18 > 2 > 2 32 2 > 16 64 > 4 > 4/76 < = 8 8/4 > 2 4 4/4 > 8/4 > 8 32 128

CVP19 > 2 > 2 > 32 < = 1 > 16 32 > 4 > 4/76 > 16 64/4 > 2 > 128 16/4 > 8/4 > 8 8 128

CVP23 > 2 > 2 > 32 < = 1 > 16 64 2 > 4/76 16 16/4 > 2 16 16/4 > 8/4 > 8 64 128

CVP24 > 2 > 2 32 < = 1 > 16 32 4 > 4/76 > 16 64/4 > 2 32 > 16/4 > 8/4 > 8 > 128 128

CVP25 > 2 > 2 > 32 < = 1 > 16 64 > 4 > 4/76 < = 8 8/4 > 2 4 4/4 > 8/4 > 8 16 128

CVP27 > 2 > 2 > 32 4 > 16 64 > 4 > 4/76 16 8/4 > 2 4 4/4 > 8/4 > 8 32 128

CNK1 > 2 > 2 < = 4 < = 1 < = 8 64 0,5 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 64 > 128

CNK2 > 2 > 2 < = 4 < = 1 < = 8 64 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

CNK3 > 2 > 2 < = 4 < = 1 < = 8 128 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 4/4 > 8 128 > 128

CNK4 > 2 > 2 > 32 > 8 > 16 32 0,5 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 64 > 128

CNK5 > 2 > 2 < = 4 < = 1 < = 8 128 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

CNK6 > 2 > 2 8 < = 1 < = 8 64 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 32 > 128

CNK7 > 2 > 2 > 32 > 8 > 16 < = 16 2 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

CNK8 > 2 > 2 < = 4 > 8 < = 8 32 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

CNK9 > 2 > 2 < = 4 > 8 < = 8 64 1 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

CNK10 > 2 > 2 > 32 > 8 > 16 32 0,5 > 4/76 > 16 > 64/4 > 2 > 128 > 16/4 > 8/4 > 8 128 > 128

Isolate cells are colored according to sequence type for better visualization, MIC cells are colored according to isolate susceptibility as per EUCAST 2022 v12 
breakpoints (version 01.01, 2022) (green: susceptible, yellow: susceptible at increased dosage, red: resistant)

CIP, ciprofloxacin; LVX, levofloxacin; AMK, amikacin; CST, colistin; CHL, chloramphenicol; FOF, fosfomycin; TGC , tigecycline; SXT, trimetoprim-sulfamethoxazole; 
PIP, piperacillin; TZP, piperacillin/tazobactam; CTX, cefotaxime; CAZ, ceftazidime; CAA , ceftazidime/avibactam; CTA , ceftolozan/tazobactam; IPM, imipenem; MEM, 
meropenem; TMO, temocillin
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one large cluster. P. aeruginosa ST111 and ST233 iso-
lates and K. pneumoniae ST78 isolates were not clus-
tered due to the absence of environmental isolates with 
matching sequence types.

Phylogenetic analysis
As Fig.  2 shows, the isolates within the K. pneumoniae 
ST147 Cluster exhibited a high degree of relatedness 
to each other, as did the isolates within the P. aerugi-
nosa ST823 cluster. Seven out of eight clinical K. pneu-
moniae ST147 isolates belonged to two very small but 
extremely tight clusters (CNK7 with environmental iso-
lates CU1391, CU1293, CU1470, and CU0050 and CNK1, 
CNK2, CNK5, CNK6, CNK8 and CNK10 with the envi-
ronmental isolate CU0071). The P. aeruginosa isolates, 
on the other hand, even more markedly formed one large 
cluster with the environmental isolates.

Resistance genes
Plasmid incompatibility groups detected in K. pneumo-
niae isolates by PlasmidFinder-2.0 are listed in Table  3 
in the appendix. The table shows that several plasmids 
were shared with environmental ST147 isolates. K. 
pneumoniae ST78 isolates and ST147 isolates did not 
share any plasmids. All ST147 isolates carried the same 
plasmids, except for the three latest ST147 isolates, 
recovered in 2020 and 2021, which carried an additional 
IncHI2-type plasmid. Tables  4 and 5 in the appendix 
show the Antibiotic resistance genes detected on VIM-
encoding P. aeruginosa genomes and on NDM- and 
OXA48-encoding K. pneumoniae genomes by AMRFin-
derPlus, respectively. There were only two internal stop 
codons found with INTERNAL_STOP (CVP2 fosA and 
CVP5 fosA) in resistance genes. The VIM-encoding gene 
that was detected in the course of routine diagnostics in 
CVP19 was not detected on its sequenced genome, but 
a repeated targeted PCR with the Allplex Entero-DR 
Assay (Seegene, Seoul, South Korea) from the isolate 
and its extracted genomic DNA confirmed the presence 
of the resistance gene. Predicted antibiotic resistances 
by the  ASA3P pipeline for P. aeruginosa ST823 and K. 
pneumoniae ST147 isolates are displayed in Fig. 3 in the 
appendix.

Phenotypical susceptibility
According to EUCAST 2022 v12 breakpoints (version 
01.01, 2022) all tested isolates were resistant to fluoro-
quinolones and imipenem (see Table  2). Despite the 
metallo-beta-lactamases (MBL), one P. aeruginosa iso-
late (CVP19) was susceptible at high dosing regimen 

to meropenem, nine to piperacillin, eleven to pipera-
cillin/tazobactam, and 13 to ceftazidime, as well as 15 
at standard dosing regimen to ceftazidime/avibactam. 
While all P. aeruginosa were still susceptible to colistin 
and 15/22 to ceftazidime/avibactam, 5/10  K. pneumo-
nia isolates were resistant to both. Both K. pneumoniae 
ST78 isolates and the three latest ST147 isolates were 
resistant to colistin. Analysis of the contigs of the 
IncHI2-type plasmid showed that it did not carry colis-
tin resistance genes; however, the full sequence of the 
plasmid was not available for analysis. Among these, two 
ST147 and one ST78 isolate were also resistant to tigecy-
cline. Two ST147 isolates and one ST78 were resistant to 
chloramphenicol.

Discussion
K. pneumoniae clones with high AMR risk represent a 
tremendous public health burden and have played a cen-
tral role in the global spread of AMR [33]. K. pneumo-
niae ST147 has emerged as one of the most important 
AMR clones and clearly exhibits most of the essential 
characteristics that define a global high-risk AMR clone. 
Several studies have described efficient transmission 
between patients in the hospital setting [18] and even 
through drainage water from one room to another [24, 
34]. P. aeruginosa is increasingly recognized for the abil-
ity of certain hospital populations to cause nosocomial 
infection outbreaks with significant morbidity and mor-
tality. Both, K. pneumoniae and P. aeruginosa, form bio-
films in toilet bowls, particularly behind the flushing rim 
of the toilet, and establish themselves in hospital water 
systems, which allow the pathogens to persist and poten-
tially spread out of the toilet each time it is flushed [35, 
36]. The two clustering methods exhibited differences 
in the exact relationships of the isolates, but both dem-
onstrated that even over years, the patient and environ-
mental isolates clustered very closely together, which 
supports the assumption that these were the same clones 
[37, 38].

Our study highlights that, consistently antibiotic-
exposed patients might, in interaction with their con-
stantly antibiotic-exposed sanitary facilities form a niche 
that could be supportive for the emergence of certain 
nosocomial pathogen populations in the hospital, due 
to antibiotic-induced selection pressure [11, 39]. These 
highly resistant clones subsequently survive particularly 
well in the sanitary facilities of those patients who are 
at highest risk of colonization or infection, i.e., patients 
who are frequently treated with broad-spectrum anti-
biotics due to their immunodeficiency, and who have 
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hardly any remaining healthy normal flora able to out-
compete the highly resistant clones [40]. Once colo-
nized, the patients in turn excrete the clones and thus 
distribute them to other premises and facilities.

In our study, we sequenced two selected sets of car-
bapenemase-encoding isolates which account only for a 
fraction of carbapenemase-encoding pathogens encoun-
tered in routine practice [41]. While the susceptibility 
profiles appear atypical for P. aeruginosa isolates that 
encode VIM-type carbapenemases, it should be men-
tioned that ST823 wastewater isolates exhibited the 
same kind of antibiograms [17]. Overall, as expected, the 
therapeutic options were very limited for all isolates [42] 
with a few newer antibiotics and combinations untested 
[43]. The effect of the phoQ and pmrB mutations in the 
strains is still unclear [44–47].Prevention, evidently, 
remains the much more potent means of combating this 
problem. Since biofilm is one of the most effective ways 
for bacteria to colonize the aquatic niche of sanitary 
facilities, its formation should be prevented. Therefore, 
several preventive hygienic measures were taken accord-
ing to national recommendations [48]. As constructional 
measures, toilets in all newly build wards are designed 
rimless and in high-risk areas toilets were remodeled to 
fit the rimless standard. As additional routine hygienic 
measures, surfaces of toilets, sinks and shower basins 
are daily disinfected chemically, moreover, sink and 
shower drains are incubated with a solution of oxidiz-
ing disinfectants on a weekly basis, in order to minimize 
biofilm formation and to reduce high microbial burden. 
In high risk areas (e.g. bone marrow transplantation) 
disinfection devices on sink drains applying heat and 
electromechanical vibration [49] had been installed, 
however, regarding toilets and shower basins there exist 
no corresponding technical solutions [48]. With the 
implemented hygiene and prevention measures presum-
ably colonization pressure is decreased due to reduced 
microbial load of showers and sinks. The present study 
did not involve an individualized, patient-specific evalu-
ation of transmission routes or a clinical assessment. It is 
highly probable that all the following transmission routes 
existed: from patient to environment, from environment 

to patient, directly from patient to patient, and through 
cases that were imported and became detectable under 
antibiotic selection pressure. Without more detailed 
analyses, it is not possible to accurately determine which 
transmission route dominated, only that all of these pos-
sibilities exist.

As for the differences between genotype-predicted/
expected and phenotypic resistance, it must be pointed 
out that the accuracy of such algorithms decreases 
with the number of resistance and virulence genes pre-
sent, which the isolates analyzed here have an over-
abundance of. Moreover, it is particularly difficult to 
infer resistance from the genotype in P. aeruginosa, 
as resistance is usually porin-mediated rather than 
resistance gene-mediated [50]. For example, fosA was 
detected on all P. aeruginosa genomes, whereas a few 
were phenotypically susceptible, yet, these were not 
the two isolates in which the gene was determined to 
be non-functional. Thus, despite the many advantages 
of molecular antibiograms [51], conventional resistance 
testing appears to be indispensable, especially for such 
highly resistant pathogens that are increasingly being 
screened for molecularly.

Conclusions
Hospital drains continue to play a role in the spread of 
multidrug-resistant pathogens, as they might form favora-
ble niches for the emergence of multidrug-resistant bacte-
rial populations influenced significantly due to the constant 
patient-driven antibiotic selection pressure. Extensive tech-
nical (e.g. rimless toilets) and hygienic measures (i.e. chemi-
cal or technical disinfection of drains), constant monitoring 
and strict hygiene precautions help to prevent infections, 
however, further technical solutions are needed to prevent 
biofilm formation and selection pressure at the sanitary 
inventory level, as antibiotics are necessary for therapy, but 
their metabolites in the drains cause undesirable effects.

Appendix
(See Fig. 3 and Tables 3, 4, 5).
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Table 4 Antibiotic resistance genes detected on VIM-encoding P. aeruginosa genomes by the AMRFinder

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 23 24 25 27

aac(3)-Id x x x x x x x x x x x x x x x x x x

aac(6')-29a x

aac(6')-29b x x

aac(6')-Ib x

aac(6')-Ib' x

aac(6')-Ib4 x

aac(6')-Il x x x x x x x x x x x x x x x x x

aadA2 x

aadA6 x x

aph(3'')-Ib x x x x x x x x x x x x x x x x x

aph(3')-IIb x x x x x x x x x x x x x x x x x x x x x x

aph(3')-XV x

aph(6)-Id x x x x x x x x x x x x x x x x x

blaGES-1 x

blaOXA x x x x x x x x x x x x x x x x x

blaOXA-395 x x

blaOXA-4 x

blaOXA-486 x

blaOXA-488 x x

blaPDC-3 x x x

blaPDC-35 x x

blaPDC-38 x x x x x x x x x x x x x x x x x

blaVIM-2 x x x x x x x x x x x x x x x x x x x x

blaVIM-6 x

catB7 x x x x x x x x x x x x x x x x x x x x x x

chrA x x

cmlA6 x

crpP x x x x x x x x x x x x x x x x x x x

dfrB5 x x x x x x x x x x x x x x x x x x

floR2 x x
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Table 4 (continued)

fosA x x x x x x x x x x x x x x x x x x x x x x

gyrA_T83I x x x x x x x x x x x x x x x x x x x x x

hdeD-GI x x x

kefB-GI x

merA x x x x x x

merB x x x x x x x x x x x x x x x x x

merD x x x x

merE x x x x x x x x x x x x x x x x x x x x

merP x x x x x x

merR x x x x x x

merT x x x x x x

mexA x x x x x x x x x x x x x x x x x x x x x x

mexE x x x x x x x x x x x x x x x x x x x x x x

mexX x x x x x x x x x x x x x x x

parC_S87L x x x x x x x x x x x x x x x x x x x x x x

qacEdelta1 x x x x x x

shsP x x x

sul1 x x x x x x x x x x x x x x x x x x x x x

sul2 x x x x x x x x x x x x x x x x x

tet(G) x x

trxLHR x x x

yfdX1 x x x

yfdX2 x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 23 24 25 27

Isolates are colored according to isolate sequence type as in previous tables and figures
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Table 5 Antibiotic resistance genes detected on NDM- and OXA48-encoding K. pneumoniae genomes by the AMRFinder

CNK1 CNK2 CNK3 CNK4 CNK5 CNK6 CNK7 CNK8 CNK9 CNK10

aac(3)-IId x x

aac(3)-IIe x x x x x x x x

aac(6')-Ib-cr5 x x x x x x x x x

aadA1 x x x

aadA2 x x x x x

aph(3')-Ia x x x

aph(3')-VI x x

aph(6)-Id x x x

armA x x

arsA x x

arsB x x

arsD x x

arsR x x

blaCTX-M-15 x x x x x x x x x

blaNDM-1 x x x x x x x x x

blaOXA x

blaOXA-1 x x x x x x x x

blaOXA-48 x x x x x x x x x x

blaSHV x x x x x x x x

blaSHV-28 x x

blaTEM-1 x x x x x x x

ble x x x x x x x x x

catA1 x x

catB3 x x x x x x x x x

dfrA1 x x x x x x x x x x

dfrA12 x x x x x

emrD x x x x x x x x x x

fosA x x x x x x x x x x

gyrA_D87G x x

gyrA_S83I x x x x x x x x

gyrA_S83Y x x

hsp20 x x

merA x x

merD x x

merE x x

merR x x

merT x x

mph(A) x x x

mph(E) x x

msr(E) x x
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Table 5 (continued)

ompK36_D135DGD x x x x x x x x x x

oqxA x x x x x x x x x x

oqxB x x x x x x x x x x

parC_S80I x x x x x x x x x x

pcoA x x x x x

pcoB x x x x x

pcoC x x x x x

pcoD x x x x x

pcoE x x x x x

pcoR x x x x x

pcoS x x x x x

phoQ_R16C x x

pmrB_R256G x x x x x x x x

qacE x x

qacEdelta1 x x x x x x x x x x

qacL x x x

qnrB1 x x x x x x x x

sat2 x x

silA x x x x x

silB x x x x x

silC x x x x x

silE x x x x x

silF x x x x x

silP x x x x x

silR x x x x x

silS x x x x x

sul1 x x x x x x x x x x

sul3 x x x

terB x x

terC x x

terD x x x x x

terE x x

terW x x x

terZ x x x

tet(A) x x x x x x x x x x

tet(M) x x x

ybtP x x x x x x x x x x

ybtQ x x x x x x x x x x

CNK1 CNK2 CNK3 CNK4 CNK5 CNK6 CNK7 CNK8 CNK9 CNK10

Isolates are colored according to isolate sequence type as in previous tables and figures
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