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Abstract 

Background  The prevalence of multiple nosocomial infections (MNIs) is on the rise, however, there remains a limited 
comprehension regarding the associated risk factors, cumulative risk, probability of occurrence, and impact on length 
of stay (LOS).

Method  This multicenter study includes all hospitalized patients from 2020 to July 2023 in two sub-hospitals of a ter‑
tiary hospital in Guangming District, Shenzhen. The semi-Markov multi-state model (MSM) was utilized to analyze 
risk factors and cumulative risk of MNI, predict its occurrence probability, and calculate the extra LOS of nosocomial 
infection (NI).

Results  The risk factors for MNI include age, community infection at admission, surgery, and combined use of anti‑
biotics. However, the cumulative risk of MNI is lower than that of single nosocomial infection (SNI). MNI is most likely 
to occur within 14 days after admission. Additionally, SNI prolongs LOS by an average of 7.48 days (95% Confidence 
Interval, CI: 6.06–8.68 days), while MNI prolongs LOS by an average of 15.94 days (95% CI: 14.03–18.17 days). Further‑
more, the more sites of infection there are, the longer the extra LOS will be.

Conclusion  The longer LOS and increased treatment difficulty of MNI result in a heavier disease burden for patients, 
necessitating targeted prevention and control measures.

Keywords  Nosocomial infection, Multiple nosocomial infection, Semi-Markov multi-state model, Cumulative risk, Risk 
factors, Length of stay

Backgroud
A nosocomial infection, acquired by a patient during 
their hospitalization [1], is associated with a substantial 
disease burden [2]. The reported incidence of NIs var-
ies significantly across regions, with rates of 3.2% in the 

United States and 6.5% in the European Union. How-
ever, the worldwide prevalence is likely much higher [3, 
4]. According to the European Center for Disease Con-
trol and Prevention’s reports [5], within Europe, approxi-
mately 81,000 individuals acquire NIs daily, resulting in 
around 150,000 annual fatalities and an extended LOS 
totaling 16 million days. NIs not only compromise patient 
health but also impose significant economic burdens.

The occurrence and progression of NIs often lead 
to the simultaneous infection of multiple organs, tis-
sues, or sites, termed MNIs [6]. MNIs are notably 
prevalent, representing 10.3% of all NIs [7]. In Inten-
sive Care Units (ICUs), NIs are particularly concerning, 
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affecting approximately 71% of patients and resulting in 
a significantly prolonged LOS compared to single infec-
tions—57.9 versus 30.0 days, respectively [6]. A study 
among ICU patients revealed a higher prevalence of 
MNIs among males, who were 5 to 12 years older on 
average and experienced an extended LOS of 13 to 28 
days compared to those with single NIs [8]. However, 
these studies are relatively outdated and predominantly 
descriptive. There is a significant geographical variation 
in the prevalence of MNIs across different regions in 
China, with rates ranging from 4.31% to 11.59% reported 
in tertiary hospitals [9–14]. Importantly, the lack of sys-
tematic studies using a multi-state model to analyze 
MNIs in China is evident, underscoring the need for 
more advanced analytical approaches.

In addressing the research gap concerning the progres-
sion of MNIs, our study employed a semi-Markov MSM 
[15] to conduct a systematic investigation. This advanced 
model, which accounts for the time spent in each health 
state, offers a more precise prediction of transition prob-
abilities compared to traditional MSMs. It also enables 
a comprehensive assessment of risk factors and LOS in 
specific disease states. The semi-Markov MSM is par-
ticularly adept at addressing time-dependent biases and 
competitive risks, providing a sophisticated method for 
studying MNIs [16]. By incorporating transfer-specific 
risk factors, cumulative risk, and the probability of trans-
fer, our investigation yielded a nuanced understanding 
of MNIs’ natural course. This knowledge is essential for 
raising awareness and guiding the development of tar-
geted prevention and control strategies.

Our study builds upon the seminal work of Stewart S 
et  al. [17], who identified a critical 14-day period post-
admission for the occurrence of most NIs. This time-
frame is vital for implementing preventive strategies, as 
it presents a window of opportunity for interventions 
that could reduce the incidence of NIs. Additionally, 
we consider the findings of Habibollah et  al. [2], who 
reported an 8.09 ± 0.91 days increase in LOS due to NIs, 
with CNS infections extending LOS by 24.42 days. These 
findings underscore the severe impact of CNS infec-
tions on patient care, highlighting the need for focused 
interventions.

Expanding on the work of Kritsotakis et  al. [18], who 
found that MNIs extend LOS by 16.6 days, our study cor-
roborates and extends this finding. We provide further 
evidence of the significant impact of MNIs on healthcare 
systems, noting that the extension in LOS affects patient 
outcomes and has broader implications for healthcare 
resource allocation and hospital planning.

The central research question our study addresses 
is: How does the semi-Markov MSM offer insights into 
MNIs’ progression and inform the development of 

clinical strategies to mitigate their impact? Our analysis, 
leveraging the semi-Markov MSM, uncovers the complex 
dynamics of MNIs and identifies potential intervention 
points that could significantly improve patient outcomes. 
Our findings contribute to the ongoing discourse by 
stimulating further inquiry into the relationship between 
infection control, patient care, and NI prevention.

Methods
Research subject
The multicenter study was conducted in two sub-hos-
pitals of a 1350-bed tertiary public hospital located in 
Guangming District, Shenzhen, China. One hospital 
comprised 900 beds situated in the western region of 
Guangming District, while the other hospital consisted 
of 450 beds located in the eastern region of Guangming 
District. The study encompassed all patients who were 
admitted to the hospital between January 2020 and July 
2023. The case group comprised all patients who acquired 
NIs during the study period, while the control group con-
sisted of patients without NIs during the same period. 
Patients with a LOS of less than 48 h in both groups, as 
well as those with missing demographic information, 
clinical details, DRG grouping, antimicrobial usage data, 
and invasive procedure records were excluded. The flow-
chart illustrating the screening process for research sub-
jects is presented in Fig. 1.

Diagnosis of NIs
The diagnosis of NIs was based on the Diagnostic Crite-
ria for Nosocomial Infection 2001 (Trial) [19] issued by 
the Ministry of Health of the People’s Republic of China 
(The English version can be found in Supplementary 
Material 1.). Upon the initial detection of a NI by clini-
cal physicians, it is reported to the Infection Control 
Department through the Nosocomial Infection Surveil-
lance Information System (NISIS). This is followed by 
an assessment conducted by two experienced infection 
control specialists who determine, based on established 
criteria, whether the infection is indeed nosocomial. In 
cases where the two specialists’ opinions diverge, a third 
specialist is called upon to make the final decision. Fur-
thermore, the NISIS is integrated with interfaces to the 
Hospital Information System (HIS), Laboratory Infor-
mation System (LIS), Radiology Information System 
(RIS), Operating Room Management System (ORMS), 
and Medical Record Information System (MRIS). It 
provides early warnings for potential NIs by monitor-
ing various patient indicators such as body temperature, 
bacterial detection, inflammatory markers, chest radi-
ography findings, and the use of antimicrobial agents. 
The two aforementioned infection control specialists are 
then responsible for evaluating these alerts to confirm 
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whether they represent actual NIs. MNIs refer to occur-
rences of NIs affecting more than one distinct anatomical 
site within a patient. These infections are not considered 
as a single entity due to their potential for diverse eti-
ologies, severities, and implications on patient care. The 
microorganisms identified from different infection sites 
in patients may be either identical or diverse [6].

Patient classification and data collection methodology
Diagnosis Related Groups (DRGs) [20] are pivotal in eval-
uating the quality and efficacy of medical services and are 
instrumental in the medical insurance reimbursement 
process. The DRG system classifies patients into diagnos-
tic groups based on a variety of factors including age, dis-
ease diagnosis, comorbidities, complications, treatment 
modalities, disease severity, and resource utilization. This 
classification ensures that patients within the same DRG 
share similar or identical illness severity levels. Each 
month, the medical records management department 
uploads the data of all patients discharged in the previous 
month into the CN-DRG system. This process automates 
the determination of DRG categories and calculates the 

corresponding relative weight (RW) values for individ-
ual patients. Patients who do not meet the enrollment 
criteria for DRG categorization are designated as non-
enrollment cases. Furthermore, the collection of indica-
tor data is facilitated by the NIIS, which provides patient 
demographic information, NI data, microbial test results, 
and clinical details including diagnosis and treatment 
records. The DRGs for each patient are derived from the 
CN-DRG system, rounding out the dataset essential for 
our analysis.

Research methodology and design
The case–control study design method was employed in 
this study. Initially, a propensity score matching (PSM) 
technique was utilized to effectively address the baseline 
confounding factors between the case groups and con-
trol groups. The semi-Markov MSM was subsequently 
employed to investigate the transfer-specific risk factors, 
cumulative risk, probability of transfer, and extended 
LOS associated with both SNIs and MNIs in the matched 
dataset. The retrospective nature of this study received 
approval from the hospital Ethics Committee, thereby 

Fig. 1  The study flow chart. Note. Single Nosocomial Infection, Si, Multiple Nosocomial Infection, Mu, Lower Respiratory Tract, LRT, Surgical Site, SS, 
Blood System, BS, Skin and Soft Tissue, SST, Abdomen and Digestive System, ADS, Urinary Tract, UT, Upper Respiratory Tract, URT, Genital Tract, GT, 
Central Nervous System, CNS, Oral Cavity, OC
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obviating the need for informed consent from patients. 
To ensure patient privacy, certain individuals’ names and 
hospitalization numbers were anonymized and replaced 
with unique identifiers. The research methodology is vis-
ually depicted in Fig. 1.

Methodology for microbiological detection
The VITEK2 bacterial identification drug sensitivity 
analyzer (Biomerieux, Merieux Alliance, France) was 
employed for the identification of bacterial microorgan-
isms. The microbiological identification protocol adheres 
to the guidelines set forth by the Clinical Laboratory 
Standards Institute (CLSI).

The utilization of PSM technique
Logistic regression, a well-established statistical method 
for binary outcome prediction [21], was employed to cal-
culate the propensity scores of patients in each group. 
This technique is fundamental in estimating the likeli-
hood of treatment assignment based on observed covari-
ates, thereby mitigating selection bias in observational 
research [22]. Adhering to the principles of nearest 
neighbor and caliper matching, we meticulously con-
ducted a 1:1 case–control matching with a caliper width 
set at 0.2 to ensure group comparability. The covariates 
for matching were selected for their clinical significance 
and potential impact on outcomes, encompassing patient 
gender, age, admission with infection (AI), admission 
route (Emergency, Outpatient, Transferred from other 
medical institutions), Charlson comorbidity score [23], 
relative weight (RW), surgery (defined as procedures 
performed exclusively in the operating room), invasive 
mechanical ventilation (IMV), central venous catheteri-
zation (CVC) duration, and indwelling catheter (IC) 
presence.

Data analysis of multi‑state models
The establishment of multi‑state model
In this study, we developed four distinct multi-state mod-
els to delineate the transition of patients through various 
health states in relation to NI:

Model 1 (Mixed Model): This framework categorizes 
patients into four stages aligned with their clinical tra-
jectory from hospital admission to potential NI and 
discharge. State 1 indicates the pre-infection period post-
admission, highlighting NI susceptibility. State 2 is desig-
nated for SNIs, while State 3 accounts for MNIs. State 4 is 
an absorbing state representing either discharge or death, 
with both outcomes combined due to the rarity of fatal 
NI cases. Transitions are possible from State 1 to States 
2, 3, or 4, and from State 2 to States 3 or 4. State 3 leads 

exclusively to State 4, with the transition from MNIs back 
to SNIs omitted due to limited patient data (Fig. 2a).

Model 2 (Adsi model): Patients can be directly trans-
ferred from state 1 (admission) to state 3 (discharge), as 
well as to state 2 (SNI). Additionally, patients in state 2 
can transition to the discharge state. Figure  2b displays 
the model’s structure, showing the possible transitions 
from admission to SNI and then to discharge. To investi-
gate the impact of different infection sites, this model was 
applied to various scenarios corresponding to specific 
infection sites, including lower respiratory tract (LRT), 
surgical site (SS), blood system (BS), skin and soft tis-
sue (SST), abdomen and digestive system (ADS), urinary 
tract (UT), upper respiratory tract (URT), genital tract 
(GT), central nervous system (CNS), oral cavity (OC), 
and other locations.

Model 3 (Admu model): Patients admitted in state 1 
can be directly transferred to either state 3 (discharge) 
or state 2 (MNI), while patients in state 2 can be trans-
ferred to the discharge state. Figure  2c illustrates the 
model, detailing the direct transitions from admission 
to MNI and then to discharge. The model was adapted 
to examine different combinations of MNIs, resulting 
in seven distinct scenarios based on various infection 
combinations.

In model 4 (Adsimu model), after admission at state 1, 
patients may transition directly to state 4 (discharge) or 
state 2 (SNI). Patients in state 2 can only progress to state 
3 (MNI) and not directly to state 4. Eventually, patients in 
state 3 will be transferred to state 4, as shown in Fig. 2d. 
These models provide a comprehensive tool for analyzing 
the dynamics of NI and patient outcomes, facilitating a 
nuanced understanding of infection risks and transitions.

Test of the Markov assumption
To evaluate the Markov properties of transition states 
within the MSM, we applied the global and local test 
methods as proposed by Gustavo Soutinho [24]. The 
Markov assumption posits that transition probabilities to 
the subsequent state are contingent solely upon the cur-
rent state, dispensing with the history of previous states. 
Utilizing the likelihood ratio test to calculate P values, 
we assessed deviations of the observed transition prob-
abilities from those implied by the Markov assumption. 
A non-significant P value (P > 0.05) confirms the model’s 
adherence to the Markov property, simplifying state tran-
sition predictions by focusing on the most recent state.

Given the test results, which indicated no perfect 
adherence to the Markov property across all transitions, 
we opted for the semi-Markov MSM for our analysis. 
This selection was underpinned by the semi-Markov 
model’s capacity to accommodate diverse sojourn time 
distributions, thereby capturing the unique dynamics of 
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state transitions evident in our NI data. Unlike the tra-
ditional Markov model, which assumes exponential 
holding times, the semi-Markov MSM provides a more 
sophisticated representation of state durations, essential 
for our dataset where the Markov assumption was not 
universally valid. Crucially, the semi-Markov model pre-
serves the Markovian decision-making process for transi-
tions [15], enabling a nuanced and accurate depiction of 
the NI state dynamics observed in our study.

Introduction to a semi‑Markov MSM [15]
To construct a semi-Markov stochastic process, consider 
the time homogeneous Markov chain {Jn}n≥0 as the basis, 
the state space is: 

{

1,2, . . . , l
}

 , the transition intensity 
from state i to state j i  = j   is Pij = A

(

Jn = j|Jn−1 = i
)

 . 
We define:

The increasing order of the jump time is represented 
by T0 = 0 < T1 < T2 < T3 < …, defining the number of tran-
sitions to time t as N (t) = max{n : Tn < t} , where 
t ≥ 0. The random process X(t): = JN(t) is a semi-Markov 

∑

j  =i

pij =

{

1 for non − absorbing i,
0 for absorbing i.

process, where upon entering state i, the subsequent 
state j is determined by transition probability pij, and the 
duration of transitioning from state i to j follows a ran-
dom variable with cumulative distribution function Fij(t): 
Fij(t) = P(τn ≤ t| Jn−1 = i, Jn = j), t ≥ 0, where τn = Tn − Tn−1, 
Therefore, semi-Markov processes do not exhibit Marko-
vian properties and thus cannot be considered as Markov 
processes. Furthermore, semi-Markov processes allow 
for arbitrary distributions of stay times in any state while 
preserving the Markov properties for embedded (dis-
crete-time) Markov chains 

{

jn
}

n
≥ 0.

Data distribution selection
The flexible parameter MSM is employed for semi-
Markov model analysis, enabling the selection of param-
eter distribution types such as Weibull, exponential, 
Gompertz, gamma, log-logistic, log-normal, general-
ized gamma (gengamma), original generalized gamma 
(gengama.orig), generalized F (genf), and original gen-
eralized F (genf.orig). To fit and optimize the parameter 
distribution, the Akaike information criterion (AIC) [25] 
was utilized to screen the data distribution parameters of 
the regression model. Subsequently, the distribution with 

Fig. 2  The multi-state models employed in this study. The diagram (a) is divided into four states, representing the natural history of nosocomial 
infection occurrence. Due to insufficient deaths, death and discharge statuses were combined, and the transfer routes were ignored due to few 
cases of multiple nosocomial infection transferring to single nosocomial infection. The diagrams (b) and (c) have only three states each for research 
purposes, with state 2 representing single or multiple nosocomial infections. The diagram (d) omits the paths of single nosocomial infection transfer 
to discharge and admission transfer to multiple nosocomial infection
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the lowest AIC value was chosen to establish the param-
eter regression model.

Analysis of risk factors associated with transfers
In the analysis of risk factors associated with patient 
transfers, transfer-specific regression models were 
employed, incorporating variables for propensity score 
matching and the use of antimicrobial agents. The use 
of antimicrobial agents, which may include the use of a 
single antibiotic or a combination of antibiotics as part of 
the treatment protocol. Additionally, the combined use 
of antimicrobial agents, characterized by the simultane-
ous or sequential application of multiple drugs to treat 
infections, was also factored into the models. The models 
were designed to account for the duration of the effects 
of these variables.

Multi‑state analysis of NIs impact
In our analysis of the impact of NIs on LOS, we employed 
a methodological triad to comprehensively assess the 
outcomes. Firstly, to estimate the additional LOS caused 
by NI, we adhered to the approach by Schulgen and 
Schumacher [26], which involves evaluating the expected 
difference in LOS during the infected state at a given time 
point. We applied the Bootstrapping method [27] to cal-
culate the CI for the prolonged LOS, enhancing the reli-
ability of our estimates. This process was further refined 
by conducting a stratified analysis based on the specific 
infection sites, which allowed for a more granular under-
standing of the extra LOS associated with NI.

Secondly, the computation of cumulative transfer risk 
was undertaken using the transition-specific risk func-
tion Hij(t) =

∫ t
0qij(u)du which represents the cumula-

tive risk of transitioning from state i to state j over time 
t. In the context of our work, this function is crucial for 
understanding the progression of NIs, as it captures the 
accumulated risk of moving from a non-infected state 
to an infected state, or between different infected states. 
Stratified analysis was conducted based on different sites 
of infection to explore how the cumulative risk varies 
across various anatomical locations, providing a more 
nuanced understanding of the infection dynamics.

Lastly, we predicted the transfer specificity probability 
within the MSM by calculating the probability of patients 
occupying a particular state at a given time, conditional 
on their initial state. Utilizing the R language software, 
we simulated the state history for a large cohort, default-
ing to 10,000 simulations, to derive transition probabil-
ity matrices at specific time intervals post-infection. This 
stratified analysis elucidated the distinct transition pat-
terns across different infection sites, contributing to a 
more precise prediction of transfer probabilities.

Statistical analysis
The data were entered into Excel 365 to compile a com-
prehensive database. PSM was performed using the 
Matchit package of R software (version 4.2.1). For the 
analysis of the MSM, we employed the Flexsurv pack-
age. The etm package was utilized to calculate the incre-
mental LOS attributed to NIs. Continuous variables were 
described by either the mean and standard deviation (for 
normally distributed data) or the median and interquar-
tile range (for non-normally distributed data). Group dif-
ferences in continuous variables were compared using 
the appropriate test based on the normality assumption: 
the independent samples t-test for normally distributed 
data or the Wilcoxon rank sum test for data that failed 
normality tests. Categorical variables were presented as 
constituent ratios and analyzed using the Chi-square test 
or Fisher’s exact test, as appropriate. A significance level 
of P < 0.05 was considered statistically significant for all 
comparisons.

Results
Data processing and baseline of the study
From January 2020 to July 2023, a total of 165,718 
patients were hospitalized, with 152,700 enrolled after 
applying inclusion and exclusion criteria. This included 
1,751 patients with NIs and 150,949 without. PSM suc-
cessfully paired all case group patients, resulting in a 
MSM analysis of 3,502 individuals. Most baseline char-
acteristics were balanced post-matching (P < 0.05), except 
for a higher proportion of surgical patients in the con-
trol group. The use of antibiotics was not considered in 
the matching, leading to slightly higher usage in the case 
group. The most prevalent NI pathogens were Escheri-
chia coli, Klebsiella pneumoniae, Pseudomonas aerugi-
nosa, Staphylococcus aureus, and Candida albicans. The 
top infection sites in the case group were the lower res-
piratory tract, urinary tract, upper respiratory tract, skin 
and soft tissue, and surgical sites, highlighting the pre-
dominance of these areas for NI occurrence—see Table 1.

Transfers‑specific regression results
The unstratified transfer specific regression analysis 
revealed that Age, AI, Gender (male), Admission (Oth-
ers), Surgery, CVC, and IC were significant risk factors 
for patients transitioning from admission to SNI. The 
transfer of patients from SNI to MNI is influenced by 
factors such as Age, AI, Combined use of antibiotics. 
Infection on admission and Surgery were risk factors 
for transferring patients from admission to MNI, while 
Antibiotics and Combined use of antibiotics promoted 
the transfer from infection state to discharge state 
(refer to Table 2).
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Table 1  Baseline characteristics and balance assessment of subjects after PSM

Variable Case group(n = 1751) Control group (n = 1751) P-value

Characteristic

  Age (mean (SD)) 47.51(23.41) 47.52(21.78) 0.983

  AI (%) 398(22.70) 379(21.60) 0.464

  Gender (%) 701(40.0) 694(39.60) 0.836

  RW (mean (SD)) 2.82(3.14) 2.75(3.03) 0.548

  Admission (%) 0.353

    Emergency 809(46.20) 799(45.60)

    Others 75(4.30) 60(3.40)

    Outpatient 867(49.50) 892(50.90)

  Charlson index (mean (SD)) 3.17(2.99) 3.07(2.87) 0.347

  Surgery (%) 870(49.70) 947(54.10) 0.01

  IMV (%) 241(13.80) 223(12.70) 0.397

  CVC (%) 508(29.00) 492(28.10) 0.575

  IC (%) 928(53.00) 963(55.00) 0.249

  Use.Antibiotics (%) 1661(94.90) 1129(64.50)  < 0.001

  Coantibiotics (%) 1172(66.90) 411(23.50)  < 0.001

Pathogenes  < 0.001

  Escherichia coli (%) 207(19.08%) 19(6.86%)

  Klebsiella pneumoniae (%) 136(12.53%) 51(18.41%)

  Pseudomonas aeruginosa (%) 105(9.68%) 25(9.03%)

  Staphylococcus aureus (%) 98(9.03%) 15(5.42%)

  Candida albicans (%) 67(6.18%) 27(9.75%)

  Acinetobacter baumannii (%) 66(6.08%) 11(3.97%)

  Enterobacter cloacae (%) 48(4.42%) 3(1.08%)

  Enterococcus faecalis (%) 37(3.41%) 3(1.08%)

  Stenotrophomonas maltophilia (%) 28(2.58%) 11(3.97%)

  Staphylococcus epidermidis (%) 25(2.30%) 5(1.81%)

  Enteroaerogen (%) 19(1.75%) 4(1.44%)

  Serratia marcescens (%) 13(1.20%) 1(0.36%)

  Staphylococcus hominis (%) 13(1.20%) 3(1.08%)

  Streptococcus pneumoniae (%) 13(1.20%) 6(2.17%)

  Proteus mirabilis (%) 12(1.11%) 3(1.08%)

  Candida glabrata (%) 12(1.11%) 3(1.08%)

  Ureaplasma Urealyticum (%) 11(1.01%) 3(1.08%)

  Monilia tropicalis (%) 10(0.92%) 6(2.17%)

  Others (%) 165(15.21%) 78(28.16%)

Infection sites

  LRT(%) 589(30.36%) \

  UT(%) 229(11.80%) \

  URT(%) 225(11.60%) \

  SST(%) 187(9.64%) \

  SS(%) 182(9.38%) \

  BS(%) 174(8.97%) \

  ADS(%) 119(6.13%) \

  Others(%) 116(5.98%) \

  GT(%) 55(2.84%) \

  CNS(%) 31(1.60%) \

  OC(%) 19(0.98%) \

  PC(%) 11(0.57%) \

  Bone & Joint(%) 3(0.15%) \

SD Standard Deviation, AI Admission with Infection, RW Relative Weight, IMV Invasive Mechanical Ventilation, CVC Central Venous Catheterization, IC Indwelling Catheter, 
Use.Antibiotics Use of Antibiotics, Coantibiotics Combined Use of Antibiotics, LRT Lower Respiratory Tract, SS Surgical Site, BS Blood System, SST Skin and Soft Tissue, ADS 
Abdomen and Digestive System, UT Urinary Tract, URT​ Upper Respiratory Tract, GT Genital Tract, CNS Central Nervous System, OC Oral Cavity, PC Pleural Cavity
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The regression results for transfers, stratified by 
infection site, identified Age, AI, RW, Admission (Out-
patient), Charlson index, Surgery, CVC and IC as risk 
factors for transferring from admission to SNI. Use of 
antibiotics and Combined use of antibiotics were found 
to promote transfer from NI to discharge (see Table 3).

Cumulative cause‑specific hazards in MSM
The cumulative cause-specific hazards increased over 
time for each model. The mixed-model showed a higher 
cumulative hazard of infection at SNI rather than MNI. 

The cumulative risk of discharge with a SNI was found to 
be higher in the Adsi model compared to patients with 
a SNI. The cumulative risk of a patient having an infec-
tion at one or multiple sites in the Adsimu model was sig-
nificantly higher than the risk of being discharged after 
infection. Refer to Fig. 3.

The cumulative risk curves in the SNI stratified model 
were found to be site-specific. The risk of GT infection 
peaked at 28  days and gradually declined to its low-
est point after 266  days. The risk of OC infection was 
highest between days 28 and 91, surpassing that of GT 

Table 2  Transfer specific regression results (Unstratified)

HR Hazard Ratio, CI Confidence Interval, AI Admission with Infection, RW Relative Weight, IMV Invasive Mechanical Ventilation, CVC Central Venous Catheterization, 
IC Indwelling Catheter, Use.Antibiotics Use of Antibiotics, Coantibiotics Combined Use of Antibiotics, Ad Admission, Si Single Nosocomial Infection, Mu Multiple 
Nosocomial Infection, Dis Discharge

Factors Models Trans Distribution HR Low95%CI Up95%CI

Age Adsi model Ad → Si gengamma 1.006 1.003 1.008

Mixed model Si → Mu gompertz 1.006 1.003 1.008

AI Adsi model Ad → Si gengamma 1.293 1.180 1.417

Mixed model Ad → Si gengamma 1.293 1.180 1.417

Admu model Ad → Mu lnorm 2.043 1.100 3.795

Adsimu model Si → Mu lnorm 2.079 1.220 3.542

Adsimu model Mu → Dis genf 1.421 1.131 1.786

Gender (Female) Adsi model Ad → Si gengamma 0.881 0.820 0.947

Adsi model Si → Dis llogis 0.798 0.742 0.858

Mixed model Ad → Si gengamma 0.881 0.820 0.947

Mixed model Si → Dis llogis 0.795 0.739 0.855

Admission (Others) Adsi model Ad → Si gengamma 1.257 1.032 1.531

Mixed model Ad → Si gengamma 1.257 1.032 1.531

Admission (Outpatient) Mixed model Si → Dis llogis 0.850 0.788 0.916

Adsi model Si → Dis llogis 0.865 0.802 0.932

Surgery Adsi model Ad → Si gengamma 1.228 1.131 1.333

Mixed model Ad → Si gengamma 1.228 1.131 1.333

Mixed model Ad → Mu lnorm 2.303 1.237 4.286

Mixed model Ad → Mu lnorm 2.303 1.237 4.286

IMV Adsi model Si → Dis llogis 0.796 0.673 0.941

Mixed model Si → Dis llogis 0.818 0.694 0.964

CVC Adsi model Ad → Si gengamma 1.316 1.180 1.468

Mixed model Ad → Si gengamma 1.316 1.180 1.468

IC Adsi model Ad → Si gengamma 1.14 1.04 1.24

Mixed model Ad → Si gengamma 1.14 1.04 1.24

Use.Antibiotics Adsi model Si → Dis llogis 1.45 1.23 1.71

Mixed model Si → Dis llogis 1.44 1.22 1.70

Mixed model Mu → Dis llogis 3.71 1.14 12.05

Adsimu model Mu → Dis genf 11.88 5.37 26.28

Coantibiotics Adsi model Si → Dis llogis 1.34 1.23 1.45

Mixed model Si → Mu gompertz 4.57 1.98 10.56

Mixed model Si → Dis llogis 1.37 1.26 1.49

Mixed model Mu → Dis llogis 2.67 1.40 5.10

Admu model Mu → Dis llogis 3.29 1.39 7.79
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infection. The risk of CNS infection was lowest within 
28 days and highest after 91 days, surpassing that of OC 
infection. The risk of LRT infection reached its mini-
mum after 28 days and remained consistently low (refer 
to Fig. 4a).

The risk of UT & BS infections increased after 21 days in 
MNI stratified models. The risk of infections at two sites 
was higher than that of infections at more than two sites, 
while LRT & others infections had a higher cumulative risk 
than UT & Others infections at 77 days. Refer to Fig. 4b.

Table 3  Transfer specific regression results based on infection sites

HR Hazard Ratio, CI Confidence Interval, LRT Lower Respiratory Tract, SS Surgical Site, BS Blood System, SST Skin and Soft Tissue, ADS Abdomen and Digestive 
System, UT Urinary Tract, URT​ Upper Respiratory Tract, GT Genital Tract, CNS Central Nervous System, OC Oral Cavity, AI Admission with Infection, RW Relative Weight, 
CVC Central Venous Catheterization, IC Indwelling Catheter, Use.Antibiotics Use of Antibiotics, Coantibiotics Combined Use of Antibiotics, Ad Admission, Si Single 
Nosocomial Infection, Mu Multiple Nosocomial Infection, Dis Discharge

Factors Models Trans Distribution HR Low95%CI Up95%CI

Age ADS Adsi model Ad → si lnorm 1.014 1.007 1.022

URT Adsi model Ad → si gengamma 1.010 1.000 1.010

OC Adsi model Si → Dis gompertz 0.760 0.654 0.882

AI LRT Adsi model Ad → si gengamma 1.506 1.277 1.776

SST Adsi model Ad → si lnorm 1.418 1.060 1.898

ADS Adsi model Ad → si lnorm 1.384 1.002 1.911

Others Adsi model Ad → si gengamma 1.838 1.361 2.482

Gender LRT Adsi model Si → Dis llogis 0.821 0.708 0.953

URT Adsi model Si → Dis llogis 0.675 0.562 0.809

SS Adsi model Si → Dis lnorm 0.778 0.607 0.999

BS Adsi model Ad → si lnorm 0.703 0.522 0.946

BS Adsi model Si → Dis weibull 0.677 0.556 0.824

UT Adsi model Ad → si lnorm 0.687 0.544 0.868

ADS Adsi model Ad → si lnorm 0.679 0.533 0.865

GT Adsi model Ad → si gompertz 33.700 2.200 515.000

RW SST Adsi model Ad → si lnorm 1.231 1.137 1.333

ADS Adsi model Ad → si lnorm 1.090 1.001 1.187

OC Adsi model Si → Dis gompertz 0.010 0.001 0.146

URT Adsi model Ad → si gengamma 1.080 1.020 1.150

Admission (Outpatient) LRT Adsi model Ad → si gengamma 1.162 1.009 1.338

LRT Adsi model Si → Dis llogis 0.824 0.709 0.958

Charlson index SST Adsi model Ad → si lnorm 1.082 1.005 1.165

SS Adsi model Si → Dis lnorm 0.907 0.826 0.997

UT Adsi model Si → Dis llogis 0.926 0.875 0.981

OC Adsi model Ad → si llogis 1.410 1.147 1.732

Surgery LRT Adsi model Ad → si gengamma 1.321 1.124 1.554

UT Adsi model Ad → si lnorm 1.501 1.143 1.971

OC Adsi model Ad → si llogis 3.647 1.776 7.490

Others Adsi model Ad → si gengamma 1.473 1.120 1.937

CVC SST Adsi model Ad → si lnorm 1.637 1.123 2.386

UT Adsi model Ad → si lnorm 2.145 1.461 3.151

IC SST Adsi model Ad → si lnorm 1.30 1.05 1.62

Use.Antibiotics Others Adsi model Si → Dis weibull 1.58 1.00 2.49

Coantibiotics LRT Adsi model Si → Dis llogis 1.27 1.08 1.50

URT Adsi model Si → Dis llogis 1.27 1.05 1.54

SST Adsi model Si → Dis lnorm 1.33 1.05 1.67

UT Adsi model Si → Dis llogis 1.49 1.17 1.89

ADS Adsi model Si → Dis genf 1.57 1.22 2.01

GT Adsi model Si → Dis gompertz 0.13 0.04 0.42

Others Adsi model Si → Dis weibull 1.39 1.04 1.84
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Prediction of transition specificity probabilities for MSMs
In the SNI models, the probability of most SNI increased 
from day 7 to day 14, peaked at day 14, and gradually 
declined to its lowest point at day 90. The probability of 
GT infection peaked at 7  days and gradually decreased, 
while the probability of CNS infection reached its highest 
point at 21 days. In the MNI model, most models showed 
the highest probability of MNI at 14 days. However, the 
probability of more than two sites infection reached its 
peak at 21 days, and the transition from SNI to MNI was 
highest at 28 days. Refer to Fig. 5.

Extra LOS due to NI
The unstratified model showed that SNI increased LOS 
by 7.48 days (95%CI: 6.06–8.68). In the stratified model, 
CNS infections had the longest LOS at 24.42  days 
(95%CI: 20.76–29.55), followed by LRT infections with 

a prolonged LOS of 13.30  days (95%CI: 11.04–15.96). 
OC infection had the shortest impact on LOS, only 
extending it by 0.93 days (95%CI: 0.79–1.06). The LOS 
was prolonged by MNI in the MNI model, with a dura-
tion of 15.94 days (95%CI: 14.03–18.17) before stratifi-
cation. After stratification, infections at more than two 
sites had the greatest impact on prolonging the LOS 
(22.52 days, 95%CI: 19.82–26.35), while LRT infections 
combined with BS had the least impact (9.85  days, 
95%CI: 8.76–11.62). Notably, patients who experienced 
SNI followed by MNI had the longest LOS (34.52 days, 
95%CI: 30.03–39.7). Please refer to Fig. 6.

Discusscion
The Markov MSM, introduced by Soviet mathematician 
Markov between 1906 and 1912, is extensively applied 
in the study of epidemics and chronic diseases [28]. The 

Fig. 3  Transfer cumulative risk without stratification. The diagram (a) illustrates the cumulative risk curve of the mixed model, with state 1 indicating 
admission, state 2 representing single nosocomial infection, state 3 denoting multiple nosocomial infection, and state 4 signifying discharge. 
The diagram (b) illustrates the cumulative risk curve of the Adsi model, with state 1 indicating admission, state 2 representing single nosocomial 
infection, and state 3 denoting discharge. The Admu model’s transfer-specific cumulative risk curve (c) depicts admission as state 1, multiple 
nosocomial infection as state 2, and discharge as state 3. The diagram (d) displays the cumulative risk curve of the Adsimu model, with state 1 
representing admission, state 2 indicating single nosocomial infection, state 3 representing multiple nosocomial infection generations, and state 4 
denoting discharge
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Markov MSM operates under the assumption that future 
transitions depend solely on the current state, a principle 
known as the Markov property [29]. This implies that the 
model does not account for the aftereffect or the impact 
of previous states on future transitions. While this 
assumption simplifies the model, it may not accurately 
reflect the progression of some diseases, such as NIs, 
where the LOS can influence the risk of infection [30].

The semi-Markov MSM offers an enhancement over the 
traditional Markov MSM by incorporating the distribution 
of sojourn times in the current state before transitioning to 
the next [31]. This feature allows the semi-Markov MSM 
to capture the variability in the duration of state occu-
pancy, which is particularly relevant for NI data. Unlike 
the Markov MSM, which often assumes an exponential 
distribution for state durations, the semi-Markov MSM 
can accommodate a range of distribution types, providing 
a more flexible and realistic model for analyzing NI data.

Patients with community-acquired infections were 
included in our study due to their susceptibility to NIs, 
even if they were infected upon admission. This was done 

to investigate the impact of being infected upon admis-
sion on patients suffering from NI. The PSM method 
was used to match patients with NIs and non-NIs, fol-
lowed by MSM analysis on the matched dataset. Despite 
reducing the control group’s sample size, the case group’s 
sample size remained intact. After matching the dataset, 
baseline conditions of both groups were balanced, signifi-
cantly shortening the operation time for MSM analysis 
using R software.

In the transfer specific regression, factors such as age, 
AI, male, surgery, CVC, and IC are promoting factors 
for the transfer of admission to SNI, which are com-
mon risk factors for NI [1, 32]. Age and AI are risk 
factors for the development of MNIs in patients with 
SNIs, while AI and surgery increase the risk of devel-
oping MNIs after admission. This finding suggests that 
elderly, surgical, and community-acquired infection 
patients are at a heightened risk for MNIs. Greater 
attention should be given to protecting this popula-
tion. The rational and standardized use of antibiotics, 
especially in combination, should follow medication 

Fig. 4  The cumulative risk curves stratified by infection sites of nosocomial infection. The diagram (a) represents cumulative risk of nosocomial 
infection at a single site, while the diagram (b) represents it at multiple sites. CNS; Lower Respiratory Tract, LRT; Surgical Site, SS; Blood System, BS; 
Urinary Tract, UT; Skin and Soft Tissue, SST; Abdomen and Digestive System, ADS; Upper Respiratory Tract, URT; Genital Tract, GT; Oral Cavity, OC
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indications to avoid inducing bacterial resistance [33], 
which negatively impacts infection treatment. For 
instance, specific regression analysis revealed that the 
combination of antibiotics was identified as risk factor 
for the progression from SNI to MNI, which may be the 
result of non-standard medication.

The transfer-specific cumulative risk curve demon-
strated a gradual increase in the risk of NI over time [34]. 
SNIs had a higher cumulative risk than MNIs, and two-
site MNIs had a higher cumulative risk than more than 
two site MNIs. Discharge from the hospital with a SNI 
also carried a higher cumulative risk compared to MNI, 
indicating that while MNI posed lower risks, it was more 
challenging to treat. The cumulative risk curve, strati-
fied by infection site, demonstrated the specific nature 
of each infection site’s cumulative risk. This specificity in 
the cumulative risk of infection may have implications for 
personalized prevention and treatment of NIs.

The probability of infection does not increase linearly 
with LOS, but rather follows a wave pattern—initially 
rising and then falling [35]—due to the presence of com-
peting events such as discharge and death [36] in addi-
tion to NIs. The study found that most NIs, whether 
single or multiple, are likely to occur within 14 days after 
admission, which aligns with the findings of Stewart S 
et al. [17]. The onset of GT infection is early, while CNS 
infection tends to be delayed. As the number of infection 
sites increases, the peak probability of occurrence is also 
delayed. Therefore, we should aim to shorten LOS, reduce 
unnecessary admissions, and minimize the risk of NIs.

The use of MSMs has several advantages over case–
control studies alone in calculating the excess LOS due to 
NI. For instance, these models address time-dependent 
bias [37, 38], competing events influence [39], and avoid 
biases related to both time-dependent bias and compet-
ing risks [40]. Additionally, they consider the LOS before 

Fig. 5  Predict nosocomial infection probability. The diagram(a) shows the probability of single nosocomial infection occurring at 7, 14, 21, 28, 60, 
and 90 days based on the infection site. The diagram(b) illustrates the probability of multiple nosocomial infection occurring at 7, 14, 21, 28, 60, 
and 90 days based on the infection site. Abdomen and Digestive System, ADS; Adsi model, Adsi; Adsimu model, Adsimu; Blood System, BS; Central 
Nervous System, CNS; Genital Tract, GT; Lower Respiratory Tract, LRT; Mixed model, Mixed; Oral Cavity, OC; Surgical Site, SS; Skin and Soft Tissue, 
SST; Upper Respiratory Tract, URT; Urinary Tract, UT; Admu model, Admu; Three sites of nosocomial infections, Threemu; Two sites of nosocomial 
infections, Twomu
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infection to prevent excessive results [41]. Therefore, the 
result of this study shows that NI has a smaller impact 
on the LOS compared to ordinary matched control stud-
ies [42]. The study found that SNI increased the LOS by 
7.48  days, similar to the 7.8  days reported by Stewart S 
et al. [17] using a MSM. LRT infection extended the LOS 
by 16.3 days, BS infection prolonged it by 11.4 days, and 
SS infection added an extra 9.8  days to LOS, which is 
consistent with our findings. The result (8.09 ± 0.91 days) 
obtained by Habibollah et  al. [2] using the MSM was 
similar to ours, and they also found that CNS infections 
had the longest LOS (21.28 ± 8.09  days), which is con-
sistent with our finding of 24.42 days. The result of this 
study differs significantly from another national hospital 
in China (2.56 days) [3], possibly due to the higher grade 
and more severe condition of patients in that hospital, as 
well as longer LOS for the control group.

The study found that MNIs (unstratified) extended 
LOS by 15.94 days, similar to the findings of Kritsotakis 
et  al. [18] (16.6  days). The greater the number of infec-
tion sites, the longer the extra LOS [43, 44], indicat-
ing that treatment becomes more challenging with an 
increasing number of infection sites. By calculating the 
extended LOS caused by NIs, it can be used to determine 
the direct economic losses associated with NIs. This 
has significant practical value in areas like cost account-
ing for prevention and control, evaluation of preventive 
measures’ effectiveness, and medical insurance payment 
accounting.

The study has some limitations: for instance, the sample 
size of MNI is small, particularly in the stratified analysis 
where some layers have insufficient samples, resulting 
in low statistical power. In future research, we plan to 
extend the sampling time frame to enhance the sample 

Fig. 6  Extra − LOS and its 95% CI for various types of NIs. The figure showcases the varying distributions and patterns of extra-LOS among diverse 
NIs hospitalizations. The figure is composed of columns representing the extra-LOS for each hospitalization type. Of note, each column 
is accompanied by a line segment, representing the 95% CI for the corresponding extra-LOS value. Specifically, the upper endpoint of the line 
segment signifies the upper limit of the 95% CI (up95%CI), while the lower endpoint marks the lower limit (low95%CI). Note. Length of Stay, LOS; 
Confidence Interval, CI; Nosocomial Infection, NI; Adsi model, Adsi; Central Nervous System, CNS; Lower Respiratory Tract, LRT; Surgical Site, SS; 
Blood System, BS; Urinary Tract, UT; Skin and Soft Tissue, SST; Abdomen and Digestive System, ADS; Upper Respiratory Tract, URT; Genital Tract, GT; 
Oral Cavity, OC; Admu model, Admu; Three sites of nosocomial infections, Threemu; Two sites of nosocomial infections, Twomu; Adsimu model, 
Adsimu
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size. The effect of the NI pathogens was not considered. 
In the future, we plan to conduct a specialized study on 
NI pathogens using MSM. The semi-Markov model only 
considers a time-homogeneous stochastic process with 
a constant transfer risk. However, in practice, there may 
still be situations where the risk is not constant, requiring 
further research. The study is multicenter, but it only uses 
data from one area, so the results may be specific to that 
region and differ from other studies.

Conclusion
In conclusion, this study utilized a flexible parametric 
MSM based on cause-specific risk to simulate and ana-
lyze the occurrence and progression of SNIs and MNIs, 
aligning with their natural history. The risk, occurrence 
probability, and extra LOS are higher for certain SNIs like 
CNS infections and LRT infections. Although the cumu-
lative risk and probability of MNI are lower than those 
of SNI, the extra LOS caused by MNI is longer. Targeted 
measures should be formulated and implemented to pre-
vent and control key infection sites as well as MNIs.
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