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Abstract
Background  Multidrug-resistant organisms (MDRO) pose a significant threat to public health. Intensive Care Units 
(ICU), characterized by the extensive use of antimicrobial agents and a high prevalence of bacterial resistance, 
are hotspots for MDRO proliferation. Timely identification of patients at high risk for MDRO can aid in curbing 
transmission, enhancing patient outcomes, and maintaining the cleanliness of the ICU environment. This study 
focused on developing a machine learning (ML) model to identify patients at risk of MDRO during the initial phase of 
their ICU stay.

Methods  Utilizing patient data from the First Medical Center of the People’s Liberation Army General Hospital 
(PLAGH-ICU) and the Medical Information Mart for Intensive Care (MIMIC-IV), the study analyzed variables within 24 h 
of ICU admission. Machine learning algorithms were applied to these datasets, emphasizing the early detection of 
MDRO colonization or infection. Model efficacy was evaluated by the area under the receiver operating characteristics 
curve (AUROC), alongside internal and external validation sets.

Results  The study evaluated 3,536 patients in PLAGH-ICU and 34,923 in MIMIC-IV, revealing MDRO prevalence 
of 11.96% and 8.81%, respectively. Significant differences in ICU and hospital stays, along with mortality rates, 
were observed between MDRO positive and negative patients. In the temporal validation, the PLAGH-ICU model 
achieved an AUROC of 0.786 [0.748, 0.825], while the MIMIC-IV model reached 0.744 [0.723, 0.766]. External validation 
demonstrated reduced model performance across different datasets. Key predictors included biochemical markers 
and the duration of pre-ICU hospital stay.

Development and validation of machine 
learning models to predict MDRO colonization 
or infection on ICU admission by using 
electronic health record data
Yun Li1,2†, Yuan Cao1,2†, Min Wang1,2†, Lu Wang1,2, Yiqi Wu1,2, Yuan Fang1,2, Yan Zhao2, Yong Fan3, Xiaoli Liu3, 
Hong Liang3, Mengmeng Yang2, Rui Yuan1,2, Feihu Zhou2, Zhengbo Zhang3* and Hongjun Kang2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13756-024-01428-y&domain=pdf&date_stamp=2024-7-3


Page 2 of 10Li et al. Antimicrobial Resistance & Infection Control           (2024) 13:74 

Background
Antimicrobial resistance constitutes a major threat to 
public health [1]. Bacteria that are resistant to three or 
more classes of antimicrobial agents are typically catego-
rized as multidrug-resistant organisms (MDRO). Inter-
national experts collaboratively established an interim 
standard for defining MDRO in 2012, targeting five prev-
alent bacterial species: Staphylococcus aureus, Enterococ-
cus spp., Enterobacteriaceae, Pseudomonas aeruginosa, 
and Acinetobacter spp., and meticulously specified the 
antimicrobial categories for defining multidrug resistance 
in these bacteria [2]. The proliferation of MDRO infec-
tions contributes to a rise in the misuse of antimicrobials, 
heightens the likelihood of adverse drug events, extends 
the duration of hospitalization, and increases the mortal-
ity rates among patients [3]. Intensive Care Units (ICU), 
characterized by extensive antimicrobial use and high 
bacterial resistance rates, are prominent areas for the 
prevalence of MDRO infections [4, 5].

Promptly identifying patients at elevated risk for 
MDRO colonization or infection is beneficial for cur-
tailing the dissemination of MDRO and bettering the 
patients’ prognosis [6]. During the early phase of ICU 
admission, it is common for healthcare providers to test 
body fluid samples to establish an infection diagnosis. 
Nevertheless, the commonly employed techniques for 
microbial culture and drug sensitivity testing in hospitals 
around the globe are protracted, with the process from 
sample delivery to report retrieval usually spanning sev-
eral days [7]. Methods proposed by Gupta et al. [8] to 
curb MDRO transmission and infection involve increas-
ing laboratory test accuracy and the active cultivation of 
specimens from patients with potential infections. How-
ever, this strategy requires substantial medical resources 
[9], and during the Coronavirus Disease 2019 (COVID-
19) pandemic, there were reports of hospitals interrupt-
ing MDRO screening and monitoring due to shortages 
in manpower and financial resources [10]. Hence, ana-
lyzing from a medical resource optimization standpoint, 
focused surveillance supersedes broad-based monitoring. 
The development of an MDRO alert system, employing 
particular technological methods to intensively monitor 
high-risk patients, is crucial for diminishing the develop-
ment and transmission of resistant bacteria and for better 
resource allocation in healthcare.

Machine learning (ML) has become increasingly 
prevalent in disease prediction models, demonstrating 
notable success in performance. Compared with logistic 

regression, ML can effectively deal with complex lin-
ear and nonlinear relationships between variables in a 
data set, which can greatly improve the prediction per-
formance of diseases [11]. There are also very few stud-
ies that have cross-validated multidrug-resistant bacteria 
prediction models from different countries. Therefore, 
in this research, we propose developing a predictive 
model based on ML, utilizing data obtained early dur-
ing a patient’s ICU stay. This model is intended to early 
detect patients with colonization or infection by MDRO, 
thereby decreasing MDRO proliferation and, to a certain 
degree, supporting empirical pharmacotherapy.

Methods
Study population and definitions
This study encompasses two datasets, one derived from 
the ICU of the First Medical Center of the People’s Liber-
ation Army General Hospital (PLAGH-ICU) with patient 
data spanning from January 2008 to January 2019, and 
the other from the Medical Information Mart for Inten-
sive Care (MIMIC-IV version 2.2) database. The MIMIC-
IV database provides comprehensive clinical information 
on patients admitted to the ICU at Beth Israel Deacon-
ess Medical Center in the United States between 2008 
and 2019 [12]. Permission to use the data was obtained 
for MIMIC-IV databases (No.49,639,059). Given the 
de-indentified nature of the data, informed consent was 
waived. The datasets included information of patients 
who underwent microbial culture within 24  h of ICU 
admission. Patients under the age of 18 or those with 
an ICU stay shorter than 24  h were excluded. Patients 
detected with MDRO within 14 days prior to ICU admis-
sion were excluded (as these patients typically receive 
heightened clinical attention), and patients who reported 
a positive MDRO within 1  day of ICU admission were 
also excluded (eFigure 1). The data from 2008 to 2016 
were used for model training, and the data from 2017 to 
2019 for model validation, henceforth referred to as the 
training and temporal validation sets [13, 14], respec-
tively. Due to the anonymization process in the MIMIC-
IV database, which limits the exact admission year to a 
three-year interval, data that could not be distinctly clas-
sified as pre- or post-2017 were not included in the train-
ing or temporal validation sets.

In accordance with international expert recommen-
dations, bacteria resistant to three or more classes of 
antimicrobials were labeled as MDRO, primarily encom-
passing multiple drug-resistant strains of Staphylococcus 

Conclusions  The ML models developed in this study demonstrated their capability in early identification of MDRO 
risks in ICU patients. Continuous refinement and validation in varied clinical contexts remain essential for future 
applications.
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aureus, Enterococcus spp., Enterobacteriaceae, Pseudo-
monas aeruginosa, and Acinetobacter spp. [2]. Further-
more, per these recommendations, methicillin resistant 
staphylococcus aureus (MRSA) was directly categorized 
as an MDRO. In the definition of multidrug resistance, 
inherent natural resistance to a particular antimicrobial 
agent was not considered in determining resistance sta-
tus for that agent.

Data extraction
Data were extracted for variables accessible within a 
24-hour window preceding and succeeding patient 
admission to the ICU. These variables encompassed: (a) 
patient demographic data; (b) comorbidity profiles; (c) 
the latest laboratory test outcomes and vital sign mea-
surements recorded immediately before and after ICU 
entry; (d) duration of hospitalization prior to ICU admis-
sion; (e) total count of hospital and ICU admissions; 
(f ) duration of antimicrobial and immunosuppressant 
medication usage preceding ICU admission; and (g) any 
instances of MDRO detection within a 90-day timeframe. 
The MIMIC-IV database, providing extensive patient 
medical histories unavailable in PLAGH-ICU, was uti-
lized for this specific data extraction.

Specimens gathered within the initial 48  h of ICU 
admission were tested for MDRO colonization or infec-
tion. Key outcomes like duration of ICU and hospital 
stays, and in-hospital mortality, were also recorded. We 
excluded variables with missing data exceeding 30%, and 
cases with over 20% missing lab test values [15, 16]. In 
the PLAGH-ICU and MIMIC-IV original datasets, miss-
ing data were addressed using Multivariate Imputation 
by Chained Equations (MICE) [17]. Following the com-
pletion of MICE imputation, each original dataset yielded 
five complete datasets, from which we selected one for 
modeling and validation.

Model development and validation
Feature selection and model training were independently 
executed within the PLAGH-ICU and MIMIC-IV data-
sets. The process commenced with Spearman’s rank 
correlation for stratified clustering, isolating features 
without significant collinearity [18]. When two variables 
were found to be collinear, we typically retained one of 
them based on clinical relevance and input from clinical 
experts. These were designated as candidate features. A 
Random Forest algorithm then fitted a model incorpo-
rating all candidates, and permutation feature impor-
tance ranking [19] was employed to distill features for 
final model input. Considering the reduction of model 
performance loss and ease of use in clinical settings, we 
ultimately included the top 25 features for prediction. 
Diverse algorithms, including Logistic Regression (LR) 
[20], K-Nearest Neighbor (KNN) [21], Support Vector 

Classifier (SVC) [22], Random Forest (RF) [23], eXtreme 
Gradient Boosting (XGBoost) [24], and Multilayer Per-
ceptron (MLP) [25], were utilized for model construction. 
Before training the LR, KNN, SVC, and MLP models, the 
dataset underwent min-max normalization.

For hyperparameter optimization, Bayesian optimiza-
tion [26] in conjunction with a 5-fold cross-validation 
approach was employed within the training set. Post 
hyperparameter tuning, models were trained using train-
ing set data, followed by performance evaluation in the 
temporal validation set. A stacking methodology [27] was 
utilized to amalgamate the four most efficacious models, 
creating a robust ensemble model, which underwent fur-
ther validation. In addition, to assess the robustness of 
the imputation and its potential impact on the results, 
we performed a sensitivity analysis by applying the devel-
oped model to the temporal validation set after removing 
cases with missing data.

In the final phase, leveraging variables common to 
both PLAGH-ICU and MIMIC-IV databases, mod-
els were re-trained using the 15 most common features 
and fine-tuned in one database and subjected to external 
validation in the other. All predictive model development 
processes in this study were compliant with the Trans-
parent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) principles 
[13].

Statistical analysis
Continuous variables with deviations from a normal dis-
tribution in the baseline characteristics were quantified 
using the median and interquartile ranges to illustrate 
the central trend and distribution of the data. Categori-
cal variables were presented as counts and percentages. 
Model classification efficacy was appraised by con-
structing receiver operating characteristic curves (ROC) 
and computing the area under these curves (AUROC). 
Decision curve analysis [28] and probability calibration 
curves [29] provided additional performance insights. 
The Shapley Additive Explanations (SHAP) method [30] 
was employed to ascertain the impact of variables on 
model output. The Kruskal-Wallis test was utilized for 
assessing differences in non-normally distributed or het-
eroscedastic datasets, while chi-square tests were used 
for rate or proportion comparisons, considering p-values 
below 0.05 as indicative of statistical significance. Python 
(3.9.16) and R (4.2.3) were the tools for machine learning 
modeling and statistical analyses. Python was primarily 
utilized for data preprocessing, feature engineering, and 
construction and evaluation of machine learning models 
(scikit-learn, pandas, numpy and shap). R is mainly used 
for statistical analysis, visualization, and partial data pro-
cessing (dplyr, ggplot2 and pROC).



Page 4 of 10Li et al. Antimicrobial Resistance & Infection Control           (2024) 13:74 

Results
Baseline characteristics
The PLAGH-ICU dataset encompassed 3,536 patients, 
with those admitted between 2008 and 2016 (2388, 
67.5%) forming the training set and the rest (1148, 32.5%) 
allocated for validation (eFigure 1). The training set of 
PLAGH-ICU dataset contained 277 (11.6%) MDRO 
positive cases and the temporal validation set included 
146 (12.72%) MDRO positive cases. MDRO positives 
represented 11.96% of this cohort. In MIMIC-IV, of the 
3,4923 patients included, of which 23,506 (67.31%) were 
in the training set, 8,145 (23.32%) in validation, and 
3,272 (9.37%) excluded due to unclear admission dates. 
The training set of MIMIC-IV dataset contained 2,299 
(9.78%) MDRO positive cases and the temporal valida-
tion set included 489 (6.0%) MDRO positive cases. The 
MDRO colonization or infection rate was 8.81%. Tables 1 
and 2 detail patient baseline characteristics, showing sig-
nificant differences in ICU stay, hospital stay, and mortal-
ity rates between MDRO positive and negative patients 

(p < 0.001). Additional baseline characteristics, including 
vital signs and laboratory test values, are available in the 
supplementary materials (eTable 1 and eTable 2). MDRO 
rates in PLAGH-ICU were highest for Acinetobacter 
spp. (90.07%), then Staphylococcus aureus (73.13%), and 
Enterobacteriaceae (61.58%), with Enterococcus spp. and 
Pseudomonas aeruginosa at 40.55% and 34.12% (eFigure 
2 A). MIMIC-IV showed Enterobacteriaceae, Enterococ-
cus spp., and Pseudomonas aeruginosa rates at 33.80%, 
34.39%, and 29.04%, respectively, and Staphylococcus 
aureus at 29.25% (eFigure 2B). The availability of vari-
ables in both databases are demonstrated in eTable 3.

Table 1  Baseline characteristics of PLAGH-ICU patients
Variable Non-MDRO MDRO P-

Value(n = 3,113) (n = 423)
Age, Median [Q1, Q3] 62.2 [48.4,72.8] 60.4 

[45.3,72.1]
0.113

Male, n (%) 1,980 (63.6) 301 (71.2) 0.003
BMI, median [Q1,Q3] 24.0 [21.5,26.6] 23.4 

[20.2,26.1]
0.001

Admission Type, n (%) < 0.001
  emergency 1,478 (47.5) 272 (64.3)
  outpatient 1,635 (52.5) 151 (35.7)
Number of Admissions, 
Median [Q1, Q3]

1.0 [1.0,1.0] 1.0 [1.0,1.0] 0.716

Number of ICU Stays, Me-
dian [Q1, Q3]

1.0 [1.0,1.0] 1.0 [1.0,1.0] < 0.001

Days in Hospital Before ICU 
Admission, Median [Q1, Q3]

5.8 [0.7,10.2] 3.2 [0.1,10.8] < 0.001

MDRO Detected Within 90 
Days, n (%)

46 (1.5) 36 (8.5) < 0.001

Comorbidities, n (%)
  Heart Failure 104 (3.3) 37 (8.7) < 0.001
  Cerebrovascular Disease 175 (5.6) 29 (6.9) 0.363
 � Chronic Pulmonary 

Disease
183 (5.9) 33 (7.8) 0.150

  Liver Disease 399 (12.8) 58 (13.7) 0.662
  Renal Disease 530 (17.0) 82 (19.4) 0.256
  Diabetes 480 (15.4) 68 (16.1) 0.781
Shock Index, Median [Q1, 
Q3]

0.6 [0.5,0.8] 0.7 [0.6,0.9] < 0.001

Major Outcomes
 � Length of Hospital Stay 

(days), Median [Q1, Q3]
19.8 [13.7,29.8] 26.7 

[14.8,47.7]
< 0.001

 � Length of ICU Stay (days), 
Median [Q1, Q3]

4.0 [2.4,8.1] 8.5 [3.9,19.6] < 0.001

  In-Hospital Death, n (%) 325 (10.4) 89 (21.0) < 0.001

Table 2  Baseline characteristics of MIMIC-IV patients
Variable Non-MDRO MDRO P-

Value(n = 28,863) (n = 2,788)
Age, Median [Q1, Q3] 66.7 [54.8,78.2] 70.6 

[58.8,81.7]
< 0.001

Male, n (%) 12,672 (43.9) 1,348 (48.4) < 0.001
Weight (Median [Q1, Q3]) 77.8 [65.0,93.0] 75.8 

[62.8,91.6]
< 0.001

Admission Type, n (%)
 � Admitted from Emergency 

Room
15,931 (55.2) 1,811 (65.0) < 0.001

 � Transferred from Another 
Hospital

6,624 (22.9) 518 (18.6) < 0.001

 � Transferred from Skilled 
Nursing Facility

405 (1.4) 99 (3.6) < 0.001

  Other 5,903 (20.5) 360 (12.9)
Number of Hospital Admis-
sions, median [Q1,Q3]

1.0 [1.0,1.0] 1.0 [1.0,2.0] < 0.001

Number of ICU Stays, Median 
[Q1, Q3]

1.0 [1.0,2.0] 1.0 [1.0,2.0] < 0.001

Days in Hospital Before ICU 
Admission, Median [Q1, Q3]

0.1 [0.0,0.4] 0.1 [0.0,0.2] 0.058

MDRO Detected Within 90 
Days Prior to ICU Admission, 
n (%)

702 (2.4) 342 (12.3) < 0.001

Comorbidities, n (%)
  Heart Failure 8,121 (28.1) 1,011 (36.3) < 0.001
  Cerebrovascular Disease 4,536 (15.7) 373 (13.4) 0.001
  Chronic Pulmonary Disease 7,584 (26.3) 934 (33.5) < 0.001
  Liver Disease 4,074 (14.1) 477 (17.1) < 0.001
  Renal Disease 6,387 (22.1) 788 (28.3) < 0.001
  Diabetes 8,721 (30.2) 1054 (37.8) < 0.001
Charlson Comorbidity Index, 
median [Q1,Q3]

5.0 [3.0,7.0] 6.0 [4.0,8.0] < 0.001 

Shock Index, Median [Q1, Q3] 0.7 [0.6,0.9] 0.8 [0.6,1.0] < 0.001
Major Outcomes
 � Length of Hospital Stay 

(days), Median [Q1, Q3]
7.5 [4.6,13.4] 8.7 [5.1,15.0] < 0.001

 � Length of ICU Stay (days), 
Median [Q1, Q3]

2.5 [1.6,4.6] 2.9 [1.8,5.6] < 0.001

  In-Hospital Death, n (%) 3,688 (12.8) 497 (17.8) < 0.001
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Model evaluation
The PLAGH-ICU-based ensemble models demon-
strated optimal performance in the temporal validation 
set, recording an AUROC of 0.786 [0.748, 0.825]. In the 
MIMIC-IV models, the ensemble model achieved an 
AUROC of 0.744 [0.723, 0.766]. ROC curves for these 
models are presented in Fig. 1. In terms of AUROC, Ran-
dom Forest, XGBoost, and Ensemble methods outper-
formed other algorithms.

Decision curve analysis, depicted in eFigure 3, revealed 
that in both datasets, the ensemble model outperformed 
others in lower high-risk threshold ranges, offering 
higher standardized net benefits. Calibration analysis of 
ensemble models developed from both datasets was con-
ducted, focusing on Brier scores and the calibration curve 
metrics (Fig. 2). The PLAGH-ICU model recorded a Brier 
score of 0.1023 [0.0880, 0.1165], reflecting a higher pre-
dictive error, with its calibration curve intercept at 0.3308 
[0.1519, 0.5096] and slope at 1.4766 [1.1950, 1.7582], 
showing significant calibration deviation. In contrast, the 
MIMIC-IV model, with a Brier score of 0.0554 [0.0517, 
0.0592], demonstrated lower error. Its calibration curve 

featured an intercept of -0.6217 [-0.7160, -0.5274] and a 
slope of 1.085 [0.9755, 1.1947], indicating a smaller devia-
tion from ideal calibration compared to the PLAGH-ICU 
model. In sensitivity analysis, the model’s performance 
remained stable in the temporal validation set after 
removing cases with missing data (eFigure 4).

The external validation involved assessing the PLAGH-
ICU model on the MIMIC-IV dataset and vice versa. This 
process resulted in a reduction in model performance for 
both datasets. The PLAGH-ICU model reached a peak 
AUROC of 0.638 [0.628, 0.648] on MIMIC-IV, and the 
MIMIC-IV model attained an AUROC of 0.615 [0.585, 
0.646] on PLAGH-ICU. The ROC curves of the external 
validation model are shown in eFigure 5.

Interpretability
Feature importance in LR, RF, XGBoost, and MLP mod-
els is visually represented in radar charts (Fig.  3), high-
lighting notable differences in feature prioritization 
among these models. SHAP analysis (Fig.  4) elucidates 
the impact of individual variables on the random for-
est models. In the PLAGH-ICU context, biochemical 

Fig. 2  Probability calibration curves of ensemble models during temporal validation (A: PLAGH-ICU; B: MIMIC-IV)

 

Fig. 1  Receiver operating characteristic curves for the temporal validation of each model (A: PLAGH-ICU; B: MIMIC-IV). lr Logistic regression, knn K-Nearest 
Neighbor, svc Support Vector Classifier, rf Random Forest, xgb XGBoost eXtreme Gradient Boosting, mlp Multilayer Perceptron
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markers like C-reactive protein (CRP), procalcitonin 
(PCT), serum urea, duration of pre-ICU hospital stay, 
and interleukin-6  (IL-6) emerged as highly influential, 
as indicated by their elevated SHAP values. The brain 
natriuretic peptide (BNP) also emerged as a significant 
predictor. In contrast, the MIMIC-IV model accentuated 
the importance of red cell distribution width  (RDW), 
blood urea nitrogen (BUN), mean corpuscular hemo-
globin concentration  (MCHC), and MDRO positivity 
within 90 days. Elevated RDW and BUN levels, coupled 
with reduced MCHC, potentially signal an increased risk 
of MDRO carriage or infection. To further illustrate the 
interpretability of the model, a SHAP force plot analyzed 
the impact of features on the outcome for four patients 
(eFigure 6). In external validation, the SHAP analysis 

results, as shown in eFigure 7, displayed the top 15 fea-
tures for early prediction of MDRO.

Discussion
In this research, predictive models for early ICU MDRO 
colonization or infection were formulated utilizing the 
most significant 25 features from the PLAGH-ICU and 
MIMIC-IV datasets. These models reached AUROC of 
0.786 and 0.744 in temporal validation, aligning with the 
acceptable accuracy standard cited in [31]. Excluding 
data that necessitate clinical input or are not routinely 
collected, these models are easily adaptable to hospital 
Electronic Health Record (EHR) systems. By analyzing 
the SHAP values, it is possible to identify the features 
that have the greatest impact on the predicted outcome, 

Fig. 4  SHAP analysis (A: PLAGH-ICU; B: MIMIC-IV)

 

Fig. 3  Radar Chart of Feature Importance Rankings for Each Model (A: PLAGH-ICU; B: MIMIC-IV). lr Logistic regression, rf Random Forest, xgb XGBoost 
eXtreme Gradient Boosting, mlp Multilayer Perceptron
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and also to reveal the complex nonlinear relationships 
between these features and the predicted outcomes. This 
interpretive analysis not only enhances the transpar-
ency of the model, but also provides valuable insights for 
clinical decision making. Clinicians can incorporate this 
information into their decision-making process to more 
accurately identify high-risk patients and adjust man-
agement strategies accordingly. In addition, individual 
patient SHAP analysis demonstrates how each charac-
teristic affects their individual predicted outcomes. This 
personalized interpretation can help clinicians under-
stand a specific patient’s unique risk profile, leading to 
a tailored treatment plan. Their application could assist 
clinicians in swiftly determining MDRO colonization or 
infection in new ICU patients, likely enhancing empirical 
antimicrobial usage and mitigating MDRO proliferation. 
Future implementations will focus on deploying these 
models in clinical settings with real-time data integration, 
facilitated by developing interfaces compatible with clini-
cal EHR systems. The models will be incorporated into a 
clinical decision support system (CDSS) to deliver timely 
alerts and recommendations. The implementation will 
address challenges such as data access, privacy concerns, 
hardware and software integration, physician adoption, 
and regulatory compliance by engaging key stakeholders 
including clinicians, technology developers, and regula-
tory bodies. Additionally, a monitoring framework will 
be established to continuously assess and enhance the 
model’s performance in clinical environments, ensuring 
that it remains effective and relevant.

In the temporal validation, the performance of the RF, 
XGBoost and ensemble models, as measured by AUROC, 
surpassed that of LR, KNN, SVC, and MLP. This superi-
ority may be attributed to the fact that RF, XGBoost, and 
ensemble models are all ensemble methods, which have 
certain advantages in handling complex data. By inte-
grating the predictive outcome of multiple models, these 
methods enhance the stability and accuracy of the model 
[23, 32, 33]. Models derived from PLAGH-ICU and 
MIMIC-IV data showcase varied feature preferences. In 
the PLAGH-ICU models, the focus is on laboratory val-
ues and vital signs, with CRP, PCT, and IL-6 as primary 
indicators. Conversely, MIMIC-IV models prioritize pre-
ICU information, including hospitalization count and 
recent MDRO detection, along with lab values like RDW, 
BUN, and MCHC. The variation in data completeness, 
particularly the higher absence of certain PLAGH-ICU 
indicators in the MIMIC-IV dataset, led to their exclu-
sion in modeling. This limitation prevented evaluating 
these indicators’ effectiveness across both databases. The 
noticeable drop in model performance during external 
validation, attributed to differences in pathogen epide-
miology and medical practices, underscores the potential 
benefit of developing unit-specific MDRO early warning 

models. Similar issues have been observed in other 
studies [34]. These factors underscore the significant 
challenges in creating predictive models with strong gen-
eralizability that can be applied across different institu-
tions. Nevertheless, this remains a worthwhile endeavor. 
Collecting data from various hospitals and regions to 
construct universal predictive factors could potentially 
enhance the generalizability of these models.

This study employed only the initial EHR data from 
ICU admissions for model construction, confronting the 
inherent challenge of limited feature-target correlations, 
a common hurdle in MDRO prediction models typi-
cally struggling to attain high accuracy. Earlier research 
identifies key risk factors for MDRO infection, including 
age, immunodeficiency, invasive procedures, recent anti-
biotic use, repeated or prolonged hospitalizations, and 
prior MDRO colonization or infection [35, 36]. Yi Li et 
al. created a prediction model for carbapenem-resistant 
Klebsiella pneumoniae infection using data from three 
central Chinese hospitals’ ICUs, validated on three other 
hospitals’ data. They identified prior year colonization or 
infection, a CD4/CD8 ratio below 1, and over 48 h of par-
enteral nutrition as independent risk factors, achieving an 
AUROC of 0.844 in external validation [37]. Li Wang et 
al. conducted a retrospective analysis of 336 ICU patients 
from the First Affiliated Hospital of Xiamen University, 
identifying increased Pitt bacteremia scores  (PBS), male 
gender, and elevated CRP levels as independent risk fac-
tors in their logistic regression model, with an external 
validation AUROC of 0.77 [38]. Wang et al. employed 
data from 688 ICU patients, utilizing Lasso and stepwise 
regression to extract nine independent MDRO infec-
tion risk factors for a backpropagation neural network 
(BPNN) model, validated externally with an AUC of 
0.811 [39]. Jiang et al. analyzed data from 297 neuro ICU 
patients, finding tracheal intubation, arterial blood pres-
sure monitoring, fever, antibiotic use, and pneumonia as 
independent MDRO infection risk factors through binary 
logistic regression [40]. While these studies highlight rel-
evant risk factors, implementing these models directly 
in hospitals poses challenges. This difficulty is partly 
due to the lack of published code and model parameters 
in many studies, as well as the inability to directly apply 
models developed elsewhere to local hospital settings. 
This issue is exemplified by the significant performance 
drop observed when models developed in databases from 
different countries were validated against each other. 
Compared to previous studies, this study utilized mul-
ticenter data to establish a predictive model, featuring a 
larger volume of dataset and a more comprehensive set of 
features. This approach allows for the analysis of MDRO 
prediction models in various research contexts and pro-
vides valuable references for constructing models suit-
able for different institutions.
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In aligning the predictive modeling with real-world 
clinical scenarios, this study’s approach extends beyond 
merely identifying MDRO infection, encompassing both 
MDRO colonization and infection in the positive group 
and including non-MDRO positive cultures and nega-
tive cultures in the negative group. This strategy likely 
accounts for the notable difference in feature selec-
tion compared to other studies. Under these param-
eters, traditional lab markers for infection might have 
reduced predictive effectiveness, while metrics indica-
tive of immune compromise or systemic weakness might 
emerge as more predictive. In the MIMIC-IV dataset, 
the duration of antimicrobial usage, though considered, 
did not feature prominently, likely reflecting the short 
median pre-ICU hospitalization duration (0.1  day). Ele-
vated BUN and creatinine levels, often associated with 
renal function and nutritional status [41], appeared to 
increase the likelihood of MDRO positivity in the model. 
This could be attributed to renal impairment in severe 
infections or underlying renal conditions leading to mal-
nutrition or weakened immunity. SHAP analysis also 
suggests that lower BUN and creatinine levels correlate 
with higher MDRO positivity, potentially indicating com-
promised nutritional and immune status, as evidenced by 
diminished muscle metabolism (reflected in low creati-
nine levels), hindering the clearance of MDRO.

The models indicate that elevated liver function mark-
ers, specifically gamma-glutamyl transferase (GGT) and 
bilirubin, heighten the likelihood of MDRO positivity, 
likely due to their impact on immune and nutritional sta-
tus [42, 43]. RDW, a measure of red blood cell size vari-
ability, traditionally linked to anemia [44], emerges as a 
significant predictor in our model. Elevated RDW levels 
can reflect a state of inflammation, where erythropoietin-
driven erythropoiesis maintains hemoglobin levels until 
anemia eventually occurs. This fluctuation in red blood 
cell production causes size variations, hence the impli-
cation of RDW as an inflammation marker in our study. 
Moreover, the correlation between high RDW levels 
and nutritional deficiencies may further substantiate its 
predictive efficacy [45]. While elevated white blood cell 
count (WBC), CRP, and PCT are conventional bacte-
rial infection indicators, the model’s varied reliance on 
these markers-particularly the underutilization of WBC 
in PLAGH-ICU and its lesser emphasis in MIMIC-IV-
underscores their variable nature influenced by factors 
like age, immune status, and medication [46]. Notably, in 
PLAGH-ICU, shorter pre-ICU hospital stays surprisingly 
correlated with increased MDRO risk, possibly reflecting 
a higher likelihood of resistant bacteria carriage among 
patients transferred from other hospitals after prolonged 
treatment. This observation could also be linked to com-
munity-acquired MDRO prevalence, necessitating fur-
ther research.

This study has several limitations. First, it is a retro-
spective study using electronic health record data, and 
prospective validation of the model is needed to truly 
assess its impact on improving clinical practice. Second, 
although the model developed using PLAGH-ICU data 
has acceptable classification capabilities, its precision, 
specifically the positive predictive value, is not high, par-
ticularly at probability thresholds ensuring higher recall 
rates, which might entail high costs if applied clinically at 
this stage. Third, as previously mentioned, models built 
using data from specific institutions might not be directly 
applicable in other medical facilities; incorporating data 
from different units could be necessary to develop mod-
els with strong generalizability. Additionally, although we 
examined the feature importance across different models, 
it only indicates the correlation between variables and 
model predictions, not causality, and caution is needed 
when interpreting and applying these features.

Conclusion
Employing machine learning algorithms, this study devel-
oped models for predicting MDRO colonization or infec-
tion with data from MIMIC-IV and PLAGH-ICU. These 
models are instrumental in early identification of patients 
at high risk of MDRO colonization or infection upon ICU 
admission, a crucial step in managing antibiotic resistance 
and optimizing antimicrobial therapy. The models trained 
on ICU data from diverse geographic regions showed sig-
nificant variance in feature selection and performance. 
This underscores the practicality of medical institutions 
using their own data to train models while integrating 
insights from broader research. Future endeavors should 
concentrate on refining the predictive efficacy of MDRO 
models and assessing their real-world applicability.
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