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Abstract
Background  Nosocomial infections (NIs) frequently occur and adversely impact prognosis for hospitalized patients 
with cirrhosis. This study aims to develop and validate two machine learning models for NIs and in-hospital mortality 
risk prediction.

Methods  The Prediction of Nosocomial Infection and Prognosis in Cirrhotic patients (PIPC) study included 
hospitalized patients with cirrhosis at the Qingchun Campus of the First Affiliated Hospital of Zhejiang University. We 
then assessed several machine learning algorithms to construct predictive models for NIs and prognosis. We validated 
the best-performing models with bootstrapping techniques and an external validation dataset. The accuracy of the 
predictions was evaluated through sensitivity, specificity, predictive values, and likelihood ratios, while predictive 
robustness was examined through subgroup analyses and comparisons between models.

Results  We enrolled 1,297 patients into derivation cohort and 496 patients into external validation cohort. Among 
the six algorithms assessed, the Random Forest algorithm performed best. For NIs, the PIPC-NI model achieved 
an area under the curve (AUC) of 0.784 (95% confidence interval [CI] 0.741–0.826), a sensitivity of 0.712, and a 
specificity of 0.702. For in-hospital mortality, the PIPC- mortality model achieved an AUC of 0.793 (95% CI 0.749–
0.836), a sensitivity of 0.769, and a specificity of 0.701. Moreover, our PIPC models demonstrated superior predictive 
performance compared to the existing MELD, MELD-Na, and Child-Pugh scores.

Conclusions  The PIPC models showed good predictive power and may facilitate healthcare providers in easily 
assessing the risk of NIs and prognosis among hospitalized patients with cirrhosis.
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Introduction
Liver cirrhosis represents the 11th most common cause 
of death and accounts for over one million deaths world-
wide [1]. Infections are the most frequent and severe 
complications, affecting 20–46% of patients with cir-
rhosis [2], particularly those with decompensated cir-
rhosis. Patients with cirrhosis are at an increased risk of 
infections due to intestinal dysbiosis, impaired intestinal 
barrier, continuous translocation of pathogens, cirrhosis-
related immune dysfunction, and portal shunting [3, 4]. 
An important aspect of infection in patients with cir-
rhosis is the development of nosocomial infections (NIs), 
with or without multidrug resistance (MDR), given the 
frequency of hospital admissions and antibiotic prophy-
laxis administered for bacterial peritonitis [5]. NIs in 
patients with cirrhosis are particularly dangerous [6–8] 
and can lead to prolonged hospitalization and an increase 
in the risk of death [9].

NIs frequently occur and adversely impact outcomes 
for hospitalized patients with cirrhosis [10]. The develop-
ment of an NI complicates the condition of patients with 
cirrhosis and predisposes them to various complications, 
such as hepatic encephalopathy (HE), acute-on-chronic 
liver failure (ACLF), and acute kidney injury (AKI) [11, 
12]. Moreover, NIs may occur during the progression of 
these complications, leading to further decompensation 
and potentially increasing the short-term mortality rate 
by 2–4 times [13]. Even when the infection resolves, sur-
vival continues to be compromised [14]. Given the gener-
ally poor prognosis for patients with cirrhosis with NIs, 
early identification of high-risk individuals is essential for 
their prevention, treatment, and management [2].

Antibiotic prophylaxis is recommended for high-risk 
populations because it reduces the incidence of infec-
tions and improves survival for patients with cirrhosis. 
However, the prescription of antibiotic prophylaxis is 

usually empirical, which may increase the risk of MDR 
and worsen the prognosis of patients with cirrhosis [15]. 
The identification of populations at high risk who will 
benefit from antibiotic prophylaxis needs to be further 
refined. Several models have been proposed for risk pre-
diction of NIs in patients with cirrhosis. However, these 
models have generally relied on traditional statistical 
modeling, lacked external validation, and showed poor 
performance [10, 12]. Currently, there is a noticeable 
absence of widely utilized, NI-specific models in patients 
with cirrhosis. This gap underscores the necessity of 
employing advanced approaches and developing effec-
tive predictive models in this field. Therefore, our study 
compared a range of machine learning methods, with 
the goal of developing a robust model for risk prediction 
of NIs and concurrently evaluating the risk of in-hospi-
tal mortality in patients with cirrhosis. This endeavor 
holds the potential for early identification of high-risk 
groups among patients with cirrhosis, offering a valu-
able foundation for clinical intervention and informed 
decision-making.

The patterns and pathogens of infections in patients 
with cirrhosis are evolving rapidly, partly due to con-
comitant medications and antibiotic overuse [2]. There 
is an urgent need for effective management strategies 
to improve the outcomes for cirrhotic patients who 
develop infections [2]. Integrating the NI prediction 
model into clinical decision support systems can pro-
vide personalized risk assessments by analyzing large 
volumes of patient data, allowing for tailored preventive 
and therapeutic measures for each patient. Additionally, 
implementing the NI prediction model will help hospi-
tals accumulate more data for continuous analysis and 
improvement. This ongoing optimization will enhance 
infection control, reduce infection rates, and create a vir-
tuous cycle.

Graphical abstract
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Materials and methods
Study design and participants
We conducted a retrospective observational study to 
develop and validate prediction models for NIs and in-
hospital mortality in hospitalized patients with cirrhosis. 
The deviation cohort consists of a retrospective cohort 
of patients hospitalized with cirrhosis in the Qingchun 
branch of the First Affiliated Hospital of Zhejiang Univer-
sity, from Jan 1 to Dec 31, 2022. All adult patients hospi-
talized with cirrhosis (≥ 18 years old) were included. For 
patients with multiple hospitalizations during the study 
period, only the first hospitalization was included. Exclu-
sion criteria were patients with incomplete or missing 
medical records, patients with hepatocellular carcinoma, 
patients with previous liver transplantation, and patients 
with a hospital stay of < 48  h. The external validation 
cohort of the models were obtained from the Zhijiang 
branch of the First Affiliated Hospital of Zhejiang Univer-
sity during the same period. Figure 1 presents a detailed 
flowchart of inclusion and exclusion of participants. The 
study protocol conforms to the principles of the Decla-
ration of Helsinki and has been approved by the Ethics 
Committee of the First Affiliated Hospital of Zhejiang 
University.

Definitions
The diagnosis of cirrhosis was established independently 
by two experienced hepatologists, relying on either liver 
histology or a combination of distinctive clinical, bio-
chemical, and imaging features [16]. In cases of discrep-
ancies, resolution was achieved through panel discussion. 
Non-infectious complications of cirrhosis, such as asci-
tes, hepatorenal syndrome (HRS) and HE, were identi-
fied in patients according to guidelines established by 
the European Association for the Study of the Liver and 
International Ascites Club [17].

Infections in patients with cirrhosis refer to various 
bacterial or fungal infections that occur due to immune 
dysfunction and bacterial translocation during the course 
of the disease [2]. In this study, we focus on common 
infections in cirrhosis patients, including pneumonia, 
SBP, spontaneous bacteremia, UTI, C. difficile infection, 
soft tissue/skin infection, intra-abdominal infection, 
secondary bacterial peritonitis, infections of unknown 
sites, and other infections. These infections are identi-
fied as the most common in cirrhosis patients based on 
previous studies [10, 18, 19]. Detailed diagnostic criteria 
for these infections are provided in the Diagnostic Cri-
teria of Infections section of the Supplementary Meth-
ods. All infections that occurred, both upon admission 
and during hospitalization, were documented accord-
ing to the standard criteria. Specific data regarding the 
site of infection and the resistance profiles of infections 
were collected. Following the guidelines of the European 
Society of Clinical Microbiology and Infectious Diseases 
(ESCMID) and consensus definitions, MDR was defined 
as insensitivity to at least one agent from three or more 
antimicrobial classes [20].

Following previous studies [2, 4, 19, 21], infections are 
classified based on their source into community-acquired 
(CA), healthcare-associated (HCA), and NIs. Specifi-
cally, CA was defined as those diagnosed within 48 h of 
admission and without any hospital stays in the prior 6 
months; HCA infection was defined as those diagnosed 
within 48 h of admission in patients who had been hospi-
talized for at least 2 days in the preceding 6 months; and 
NIs were defined as those identified more than 48 h after 
admission.

Predictors and data collection
Data collection was conducted by senior medical stu-
dents who were specially trained to use the electronic 

Fig. 1  Flow diagram of enrollment

 



Page 4 of 12Li et al. Antimicrobial Resistance & Infection Control           (2024) 13:85 

medical records (EMRs) system. Standardized protocols 
were developed to ensure data quality and consistency, 
with supervising faculty members performing regu-
lar quality control by sampling and reviewing the data. 
Inter-rater reliability assessments were also conducted to 
ensure consistency among different data collectors. Our 
candidate predictive variables were determined based on 
previous published studies, expert opinions, and consen-
sus statements [7, 19, 22]. Variables at admission included 
demographic variables (sex, age), date of hospitalization, 
ward, cause of liver disease, laboratory test values, under-
lying diseases according with the Charlson Comorbid-
ity Index (CCI) [23], and the source of infection and its 
susceptibility pattern. A total of 44 variables were finally 
identified for inclusion in our study. This study followed 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guideline [24].

Data processing and variables selection
Table S2 shows the specific missing data rates for each 
variable. The table reveals that, apart from variables 
with less than 10% missing data, the remaining variables 
exhibit substantial missingness, with the lowest being 
41.94%. This high level of missing data is likely due to 
these variables not being routinely collected in patients 
with cirrhosis. Therefore, we excluded the 11 variables 
with more than 10% missing values. For variables with 
a missing rate of 10% or less, we applied multiple impu-
tation (MI) using predictive mean matching (PMM) for 
imputation [25]. Following the processes of data cleaning, 
sampling, and preprocessing, 33 variables were retained 
for analysis [26]. Furthermore, continuous variables 
were fitted using Decision Tree (DT) models to account 
for nonlinearities, and these variables were categorized 
into risk categories based on their relationship to NIs 
and in-hospital mortality, respectively (Supplementary 
Methods). Considering that the imbalance of sample 
categories could impair the model’s ability to predict 
minority classes accurately, we employed the Synthetic 
Minority Over-sampling Technique (SMOTE) to syn-
thesize samples for the minority classes, thereby enhanc-
ing the predictive precision of the models (the detailed 
mechanism of SMOTE is described in the Supplemen-
tary Methods) [27].

Prior to the modeling process, we used Random For-
est (RF), Extremely randomized Tree (ET), and Ridge 
regression to rank the importance of variables. For each 
run the data were identically encoded but due to SMOTE 
(under 10-way cross-validation) each run differs slightly. 
Therefore, each classifier was applied 100 times to ensure 
robustness. Subsequently, the variable importance of the 
three classifiers were visualized using matplotlib [28]. 
In determining the variables ultimately included in the 

model, we followed a systematic process. First, we con-
ducted a comprehensive comparison of three different 
methods, selecting variables that consistently ranked high 
among them. Second, we referenced published literature 
to consider variables that, while initially ranked lower in 
importance, demonstrated significant correlations with 
clinical outcomes, such as NIs or in-hospital mortality, 
in prior studies. Finally, we integrated the performance of 
the selected variables from the first two steps to finalize 
the variables included in the model development.

Development, validation, and evaluation of the models
Owing to the sample size, we did not use split-sample 
internal validation techniques because this may lead to 
instability of the predicted results [29]. We followed the 
TRIPOD recommendations and internally validated our 
prediction models with 1,000 bootstrapping of the train-
ing data. Bootstrapping is a process that involves random 
sampling and substitution of the original dataset, which 
is essential for obtaining reliable statistical inferences. By 
averaging performance metrics over multiple replicated 
experiments, the bootstrap method is more effective at 
reducing overfitting bias than other methods of internal 
validation, providing stable and low-biased estimates, 
and is a reliable method for assessing internal validity [30, 
31]. Six classical machine learning models; RF, eXtreme 
Gradient Boosting (XGBoost), Neural Network (NN), 
Logistic Regression (LR), Adaptive Boosting (Adaboost), 
and DT were developed to predict NIs and in-hospital 
mortality. We chose these models because they are com-
monly used for clinically relevant predictions, have easily 
interpretable clinical outcomes, and consistently produce 
the best predictions [32, 33]. Random grid search and 
cross-validation analysis were performed to determine 
the optimal parameters.

We evaluated the performance of different algorithms 
by comparing their area under the curve (AUC) results in 
internal and external validation. In addition to the AUC 
metric, for a comprehensive assessment of the predic-
tive capabilities of the algorithms, we also reported six 
evaluation metrics: sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), 
positive likelihood ratio (PLR) and negative likelihood 
ratio (NLR). When various modes exhibit comparable 
predictive performance we chose the most parsimoni-
ous model [27]. To enhance user accessibility, we also 
developed an online calculator. By inputting data from 
the EMRs upon admission, this calculator automatically 
predicts the risk of NIs and in-hospital mortality during 
hospitalization.

To assess the clinical utility of the models, we per-
formed a decision curve analysis using the external 
validation cohort to compare the net benefit of the best 
performing model with a treat-all strategy. Within a 
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range of probability thresholds, a robust model should 
outperform the treat-all strategy, identifying those at 
risk while avoiding unnecessary interventions for those 
unlikely to develop NIs or experience in-hospital mor-
tality. An ineffective model would show no, or lower net 
benefit compared with the treat-all strategy [33]. More-
over, we used the calibration curve with Brier score to 
assess model calibration. Brier score can be interpreted 
as the distance between the predicted and observed out-
comes. A lower score indicates a better calibration [34]. 
To further assess the robustness, we compared the mod-
els with several established risk prediction scores for liver 
disease: the Model for End-stage Liver Disease (MELD), 
MELD-Na, and Child-Pugh score. Subgroup analyses 
were conducted regarding age (< 60 or ≥ 60 years), body 
mass index (BMI, < 25 or ≥ 25 kg/m²), hypertension (with 
or without hypertension), diabetes (with or without dia-
betes), and complication (with or without ascites, HE, 
HRS, or gastrointestinal bleeding complications).

Statistical analysis
Categorical variables were shown as frequencies and 
proportions. For continuous variables, those following a 
normal distribution were expressed as means and stan-
dard deviations, while those not normally distributed 
were presented as medians and interquartile ranges. In 
univariate analyses, categorical variables were analyzed 
using either the Chi-square or Fisher’s exact test. For 
normally distributed continuous variables the two-tailed 
Student’s t-test was used, and the Mann-Whitney U test 
was used for continuous variables that were not normally 
distributed. In all statistical analyses, significance was 
set at p < 0.05. Analyses were conducted with R software 
version 4.3.0 (The R Foundation, Vienna, Austria) and 
Python software version 3.10.7 (Python Software Foun-
dation, Wilmington, USA) [35].

Results
Patient characteristics
Our study initially enrolled 5,479 hospitalized patients 
with cirrhosis. Of these, 1,793 were included in the final 
analysis, including 1,297 in the derivation cohort and 496 
in the external validation cohort. Baseline characteris-
tics of patients included in both cohorts during hospital-
ization are shown in Table S1. In the derivation cohort, 
patients were younger compared to those in the external 
validation cohort (mean age, 61 vs. 63 years, respectively, 
p < 0.01). The proportion of viral hepatitis as an etiology 
was higher in the external validation cohort than in the 
derivation cohort (63.3% vs. 59.4%, p < 0.01). Further-
more, the rate of intensive care unit (ICU) admission was 
higher in the external validation cohort than in the deri-
vation cohort. No significant differences were observed 

in terms of length of hospitalization, the proportion of 
NIs, or in-hospital mortality, between the two cohorts.

NIs profiles
Table  1 shows the occurrences of NIs in the derivation 
cohort, with 108 patients (8.3%) reporting NIs. Demo-
graphic characteristics, such as sex and BMI, were simi-
lar between patients with and without NIs. However, 
patients with NIs were more frequently admitted with 
infections, developed ascites and HE, and had higher CCI 
and MELD scores. Compared to patients without NIs, 
those with NIs had higher rates of ICU admission, lon-
ger hospital stays, and an increased in-hospital mortality 
rate.

Table 2 shows the details of NIs in the derivation and 
external validation cohorts. Among NIs, the proportions 
of spontaneous bacterial peritonitis (SBP), intra-abdom-
inal infection, and fungal infection were similar in the 
derivation and external validation cohorts. By contrast, 
the external validation cohort had a higher proportion 
of pneumonia, urinary tract infections, and MDR. More 
individuals in the derivation cohort tended to be spon-
taneous bacteremia, spontaneous empyema, and other 
bacterial infections, though these were not statistically 
different from those in the external validation cohort.

Correlation analysis and variable importance ranking 
analysis
To reduce the complexity of the prediction models and 
avoid including variables with high correlations, we ana-
lyzed Pearson correlation coefficients using heat maps. 
Fig. S1 shows high correlations between aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT) 
(r = 0.83) and between international normalized ratio 
(INR) and prothrombin time (PT) (r = 0.87). However, the 
other candidate predictors did not show significant cor-
relations, indicating their independence from each other.

In the process of variable selection, three ranking 
methods; RF, ET, and ridge regression, were used to rank 
the importance of variables (Fig. S2 and Fig. S3). The vari-
ables included in the model were selected based on the 
results from variable importance ranking results as well 
as a priori knowledge of the clinical significance of the 
variables. For NIs, we included eight variables: C-reac-
tive protein (CRP), albumin (ALB), ALT, glomerular fil-
tration rate (GFR), INR, CCI, BMI, and ICU admission. 
For in-hospital mortality, we included ten variables: ALB, 
GFR, white blood cell (WBC) count, CCI, INR, complica-
tion, sex, NI, high-density lipoprotein (HDL), and serum 
sodium (Na).
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Table 1  Comparison of patients with and without NI in the derivation cohort
Factor Overall (n = 1297) Without NI (n = 1189) NI (n = 108) P value
Demographic characteristics
  Age (years) 61.4(12.5) 61.2(12.4) 63.9(12.6) 0.03
  Sex (male) 837(64.5) 764(64.3) 73(67.6) 0.49
  BMI (kg/m2) 23.2(3.7) 23.2(3.7) 23.3(4.1) 0.74
  Etiology 0.04
    Viral hepatitis 770(59.4) 718(60.4) 52(50.0)
    Alcoholic 229(17.7) 203(17.1) 26(24.1)
    Others 298(23.0) 268(22.5) 30(20.4)
Laboratory test results
  TBIL (mg/dL) 1.1(0.7, 2.7) 1.1(0.7, 2.5) 1.4(0.9, 7.6) < 0.01
  ALB (g/L) 34.3(7.4) 34.6(7.4) 30.4(6.8) < 0.01
  WBC (109/L) 4.6(3.2, 6.7) 4.6(3.2, 6.6) 5.1(3.4, 7.6) 0.09
  PLT (109/L) 95.0(58.0, 149.0) 95.0(58.0, 150.0) 83.0(58.8, 142.8) 0.26
  INR 1.2(1.1, 1.4) 1.2(1.1, 1.3) 1.4(1.2, 1.5) < 0.01
  Scr (mmol/l) 1.1(1.4) 1.1(1.3) 1.5(1.6) 0.02
  BUN (mmol/l) 8.4(21.6) 8.4(22.5) 9.1(7.6) 0.45
  ALT (U/l) 23.0(15.0, 45.0) 23.0(15.0, 45.0) 23.0(12.0, 49.3) 0.31
  AST (U/l) 32.0(22.0, 61.0) 32.0(22.0, 60.0) 36.0(23.0, 82.8) 0.15
  GGT (U/l) 47.0(23.0, 103.0) 47.0(22.0, 103.0) 57.0(26.0, 122.0) 0.27
  MAP (mmHg) 89.0(13.0) 88.9(12.7) 90.5(15.7) 0.30
  SpO2 (%) 97.6(2.4) 97.6(2.3) 97.2(3.2) 0.17
  Temperature (℃) 36.8(0.5) 36.9(1.6) 37.1(2.5) 0.38
  PT (s) 13.8(12.5, 15.8) 13.8(12.4, 15.6) 15.7(13.8, 17.6) < 0.01
  CRP (mg/L) 5.3(2.2, 18.6) 4.6(2.0, 16.0) 15.9(5.6, 39.8) < 0.01
  TG (mmol/L) 1.1(0.7) 1.2(3.1) 1.1(0.7) 0.79
  TC (mmol/L) 3.4(1.8) 3.4(1.8) 3.0(1.4) 0.01
  HDL (mmol/L) 1.0(0.5) 1.0(0.5) 0.8(0.5) < 0.01
  LDL (mmol/L) 1.7(1.0) 1.7(1.0) 1.4(0.9) < 0.01
  Na (mmol/L) 140.0(138.0, 142.0) 141.0(138.0, 143.0) 139.0(137.0, 141.0) < 0.01
  K (mmol/L) 3.9(0.6) 3.9(0.6) 3.8(0.6) 0.45
  GFR (mL/min) 91.5(73.7, 102.7) 92.0(75.0, 103.0) 89.1(48.0, 97.5) < 0.01
Infection on admission 0.77
  CA 98(7.6) 87(7.3) 11(10.2)
  HCA 169(13.0) 148(12.4) 21(19.4)
CCI 5.1(2.1) 5.1(2.1) 6.0(2.4) < 0.01
MELD 12.8(7.0) 12.4(6.8) 16.6(7.5) < 0.01
Complications of cirrhosis
  Ascites 306(23.6) 271(22.8) 35(32.4) 0.02
  HRS 9(0.7) 7(0.6) 2(1.9) 0.17
  HE 52(4.0) 43(3.6) 9(8.3) 0.03
  Gastrointestinal bleeding 166(12.8) 156(13.1) 10(9.3) 0.25
Hospital course
  ICU admission 13(1.0) 6(0.5) 7(6.5) < 0.01
  Length of hospital stay 7.0(4.0, 11.0) 6.0(4.0, 10.0) 14.0(9.0, 21.0) < 0.01
  In-hospital mortality 109(8.4) 89(7.5) 20(18.5) < 0.01
Abbreviations: ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; CA, community-
acquired infection; CCI, Charlson Comorbidity Index; CRP, C-reactive protein; GFR, glomerular filtration rate; GGT, gamma-glutamyl transferase; HCA, health care-
associated infection; HDL, high-density lipoprotein; HE, hepatic encephalopathy; HRS, hepatorenal syndrome; ICU, intensive care unit; INR, international normalized 
ratio; LDL, low-density lipoprotein; MAP, mean arterial pressure; MELD, Model for End-stage Liver Disease; NI, nosocomial infection; PLT, platelet; PT, prothrombin 
time; Scr, serum creatinine; SpO2, oxygen saturation; TBIL, total bilirubin; TC, total cholesterol; TG, triglycerides; WBC, white blood cell
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Performance of the machine learning models in predicting 
NIs
A summary of the performance of our machine learning 
models is reported in Table S2. Among the six classifica-
tion algorithms for predicting NIs, RF performed best. 
In the internal validation cohort, the RF model predicted 
NIs with an AUC of 0.784 (95% confidence interval [CI] 
0.741–0.826), a sensitivity of 0.712, and a specificity of 
0.702 (Fig.  2a and Table S2). In the external validation 
cohort, the RF model predicted NIs with an AUC of 
0.728 (95% CI 0.655–0.798), a sensitivity of 0.692, and 
a specificity of 0.716 (Fig. 2b and Table S2). Further, the 
calibration plot for the external validation confirmed the 
consistency between the risks of NIs predicted by the RF 
algorithm and the actual observed risks of NIs (Fig. 2c). 
Given that the event occurrence rate was 11%, models 
with a Brier score less than 0.10 were considered infor-
mative, and our model achieved a score of 0.08. Next, 
we conducted decision curve analysis to assess the net 
benefit of the developed prediction model. The analysis 
showed that the net benefit of the NIs prediction model 
was significantly higher compared to the strategies of 
‘treat none’ and ‘treat all’ (Fig. 2d).

Performance of the machine learning models in predicting 
in-hospital mortality
As shown in Table S3, the performance of RF in predict-
ing in-hospital mortality was better than that of other 
machine learning models. In the internal validation 
cohort, the RF model predicted in-hospital mortality 
with an AUC of 0.793 (95% CI 0.749–0.836), a sensitiv-
ity of 0.769, and a specificity of 0.701 (Fig. 3a and Table 
S3). In the external validation cohort, the RF model pre-
dicted in-hospital mortality with an AUC of 0.751 (95% 
CI 0.666–0.834), a sensitivity of 0.727, and a specificity 
of 0.706 (Fig. 3b and Table S3). In the calibration curve, 
considering a 7% event rate, a model with a Brier score 
of less than 0.07 was informative, and our model reached 
a score of 0.05, indicating that it had reliable predictive 
power (Fig. 3c). Decision curve analysis showed that the 
in-hospital mortality prediction model had considerable 
clinical benefit (Fig. 3d). Additionally, the feature impor-
tance ranking plots for the models were provided in Fig. 
S4 and Fig. S5. An online application to estimate the pre-
dicted NI and in-hospital mortality risk is available at the 
website: https://pipcmodel.streamlit.app/.

Comparison of model performance with clinical existing 
models
Our PIPC-NI model demonstrated superior predictive 
performance compared to the MELD, MELD-Na, and 
Child-Pugh scores. It achieved an AUC of 0.784 (95% CI 
0.741–0.826) in the internal validation, exceeding the best 
performing MELD score of 0.687 (95% CI 0.634–0.741). 
In the external validation, the PIPC-NI model’s AUC 
was 0.728 (95% CI 0.655–0.798), superior to the highest 
Child-Pugh score of 0.660 (95% CI 0.582–0.727) (Fig. S6). 
Similarly, our PIPC-mortality model also outperformed 
the above scores in both internal and external validations. 
It recorded an AUC of 0.793 (95% CI 0.749–0.836) in the 
internal validation, and an AUC of 0.751 (95% CI 0.666–
0.834) in the external validation (Fig. S7). The DeLong’s 
test for comparing AUCs and the McNemar test for com-
paring sensitivity and specificity are presented in Tables 
S7 and S8.

Subgroup analysis
We evaluated our models across different subgroups of 
patients. Generally, an AUC of 0.50–0.70 is regarded as 
low accuracy, 0.70–0.80 as acceptable, 0.80–0.90 as excel-
lent, and above 0.90 as outstanding. In our study, the 
AUC for the PIPC-NI model ranged from 0.737 to 0.827 
in the internal validation. In the external validation, the 
PIPC-NI model ranged from 0.654 to 0.849 across differ-
ent subgroups (Table S4). For the in-hospital mortality 
model, the AUC ranged from 0.715 to 0.817 in the inter-
nal validation, and from 0.675 to 0.820 in the external 
validation (Table S5).

Table 2  Details of NIs in derivation and external validation 
cohorts
Type of infection Derivation 

cohort 
(n = 108)

External 
validation 
cohort 
(n = 52)

P value

NI diagnoses
  SBP 45 (41.7) 21 (40.4) 0.88
  Spontaneous bacteremia 10 (9.3) 2 (3.8) 0.34
  UTI 9 (8.3) 13 (25.0) < 0.01
  C. difficile infection 2 (1.9) 1 (1.9) 1.00
  Soft tissue/skin infection 7 (6.5) 2 (3.8) 0.72
  Intra-abdominal infection 4 (3.7) 1 (1.9) 1.00
  Secondary bacterial peritonitis 5 (4.6) 2 (3.8) 1.00
  Unknown site infection1 8 (7.4) 3 (5.8) 1.00
  Other infections2 12 (11.1) 4 (7.7) 0.58
Pathogens
  Bacteria 73 (67.6) 33 (63.5) 0.60
  Fungus 10 (9.3) 8 (15.4) 0.25
  MDR 7 (6.5) 10 (19.2) 0.01
The total number of infection sites may add up to > 100% because some 
patients have multiple infections
1 Unknown site infection denotes the presence of fever and leukocytosis 
requiring antibiotic therapy without any identifiable source
2 Other infections included meningitis (n = 5), bacterial enterocolitis (n = 3), and 
spontaneous bacterial empyema (n = 8)

Abbreviations: MDR, Multidrug Resistance; SBP, spontaneous bacterial 
peritonitis; UTI, urinary tract infection

https://pipcmodel.streamlit.app/
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Discussion
Using retrospective data, we developed two new pre-
diction models for NIs and in-hospital mortality in 
adults with cirrhosis. The RF models demonstrated bet-
ter performance in predicting NIs (AUC: 0.784, 95% CI 
0.741–0.826) and in-hospital mortality (AUC: 0.793, 95% 
CI 0.749–0.836) when contrasted with other machine 
learning models (AUC ranging from 0.707 to 0.751 and 
AUC ranging from 0.716 to 0.762, respectively). Our 
PIPC models (PIPC-NIs and PIPC-mortality) had been 
tested to be robust through internal and external valida-
tion processes. Additionally, based on these models, we 
developed an easily accessible website tool. Given that all 
variables were derived from routinely collected clinical 
variables, these models can be easily applied to patients 
hospitalized with cirrhosis, thereby facilitating the iden-
tification of high-risk groups, and enhancing clinical 
decision-making.

NIs are prevalent and detrimental in individuals with 
cirrhosis, as it can compromise the functionality of both 

hepatic and extra-hepatic organs, which can be associ-
ated with a very poor prognosis. The available literature 
suggests that the mortality rate within one month for 
patients with cirrhosis with NIs reaches 28%, compared 
to only 8% for those without NIs [10]. Our study aligns 
with previous findings, indicating that the in-hospital 
mortality rate for patients with cirrhosis with NIs stands 
at 19%, in stark contrast to the lower rate of 8% observed 
in individuals without NIs. These findings underscore 
the importance of primary prophylaxis against NIs in 
this specific population. Identifying high-risk patients for 
early intervention is imperative, with antibiotic prophy-
laxis emerging as the preferred strategy, particularly for 
those high-risk individuals, such as patients with acute 
gastrointestinal bleeding, low levels of ascitic fluid pro-
teins, and those with a history of spontaneous bacterial 
peritonitis [36].

Despite the demonstrated efficacy of antibiotic pro-
phylaxis in reducing infection rates and mortality among 
patients with cirrhosis, prolonged use presents significant 

Fig. 2  Performance evaluation of machine learning models for predicting NIs. (a) The ROC curve of different models for predicting the risk of NIs in the 
internal validation cohort. (b) The ROC curve of different models for predicting the risk of NIs in the external validation cohort. (c) Calibration plot of the RF 
model for predicting NIs in the external validation cohort. (d) Decision curve analysis of the RF model for predicting NIs in the external validation cohort. 
Abbreviations: AUC, area under the curve; CI, Confidence Interval
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drawbacks, notably the emergence of pathogens with 
MDR. This critical concern emphasizes the necessity 
for more nuanced and tailored approaches in antibiotic 
administration [37]. Predictive models may play a pivotal 
role by accurately identifying high-risk patients, enabling 
more personalized therapy [38]. Our PIPC-NIs models 
have been developed to ensure that the appropriate anti-
biotic treatment is delivered to the high-risk individuals 
at the optimal time. This targeted approach minimizes 
unnecessary antibiotic exposure, thereby preserving 
their effectiveness for future needs. Adopting this preci-
sion approach in managing infections among patients 
with cirrhosis is not only a move towards individualized 
care but also a significant step in improving public health 
outcomes.

There are many scoring methods for liver disease prog-
nostic assessment in clinical settings, including MELD, 
MELD-Na, and Child-Pugh, but prediction models 
for NI-specific outcomes in patients with cirrhosis are 
still lacking in the literature. Our study underscores the 

superior performance of the PIPC-NIs and PIPC-mor-
tality models through comparisons with existing models 
in predicting the risk of NIs and prognosis in patients 
with cirrhosis. The enhanced effectiveness of our model, 
compared to previous predictive scores, can be attrib-
uted to a meticulous approach to variable selection and 
modeling strategies. Our predictive variable selection 
was firstly guided by previous research, expert opin-
ions, and consensus statements, which helped to narrow 
down the pool of candidate predictors from the com-
plex array of clinical variables. Subsequently, three vari-
able importance ranking methods were used to select the 
most important predictive variables. By eliminating these 
superfluous variables and focusing on key variables, we 
can reduce data complexity and enhance model efficiency 
[39].

Moreover, in contrast to prior scores that heavily relied 
on statistical regression methods for variable selec-
tion and model training [10], we embraced a series of 
machine learning methods to construct the prediction 

Fig. 3  Performance evaluation of machine learning models for predicting in-hospital mortality. (a) The ROC curve of different models for predicting the 
risk of in-hospital mortality in the internal validation cohort. (b) The ROC curve of different models for predicting the risk of in-hospital mortality in the ex-
ternal validation cohort. (c) Calibration plot of the RF model for predicting in-hospital mortality in the external validation cohort. (d) Decision curve analy-
sis of the RF model for predicting in-hospital mortality in the external validation cohort. Abbreviations: AUC, area under the curve; CI, Confidence Interval
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model, characterized by a reduced reliance on assump-
tions and an enhanced capacity to handle numerous 
predictors and complex interactions. This methodologi-
cal shift contributes significantly to the improved perfor-
mance of our predictive model [10, 33]. In addition, we 
integrated our models into a web-based tool, designed to 
aid clinicians in assessing the risks of NIs and in-hospital 
mortality in patients with cirrhosis. Compared with the 
time-consuming pathogen culture method, our web tool 
is easy-to-apply and promptly estimates the risks of NIs. 
This opens up the possibility of early detection of high-
risk patients with cirrhosis for NIs, thus enabling timely 
intervention, potentially reducing hospitalization dura-
tion and healthcare costs. Additionally, when integrated 
into clinical decision support systems, our PIPC model 
can automatically assess the infection status of patients, 
providing comprehensive information to doctors, aiding 
in the development of personalized treatment plans and 
dynamic adjustment of therapeutic strategies. Prediction 
models also drive continuous data-driven improvement 
by accumulating and analyzing vast amounts of patient 
data, allowing for ongoing optimization of the models 
and infection control strategies. Overall, our prediction 
models have considerable potential to enhance the treat-
ment effectiveness and quality of life for patients with 
cirrhosis.

The PIPC-NI model has substantiated the impact of 
eight key variables, including CRP, ALB, ALT, GFR, 
INR, BMI, CCI, and ICU admission, on NIs outcomes in 
patients with cirrhosis. Specifically, our model confirms 
the predictive value of ALB, CRP, diabetes, BMI, and ICU 
admission, which aligns with previous studies [10, 22, 40, 
41]. In prior research, lower levels of ALB have been cor-
related with higher rates of infection, reflecting compro-
mised health and immune function. Elevated CRP levels 
have been consistently linked to an increased risk of NIs, 
as they indicate an ongoing inflammatory response and 
potential underlying infection. Patients in the ICU are 
often exposed to invasive procedures, prolonged hospi-
tal stays, and the use of broad-spectrum antibiotics, all of 
which increase the risk of developing NIs. Additionally, 
the model identifies that ALT, GFR, and INR were also 
major factors in terms of NIs risk prediction. In clinical 
practice, elevated ALT levels usually reflect the aggra-
vation of inflammation or damage of the liver, and the 
decline of liver function will affect its ability to clear bac-
teria and toxins, thereby increasing the risk of infection. 
Moreover, HRS is a serious complication of end-stage 
cirrhosis marked by increased splanchnic blood flow, 
hyperdynamic state, reduced central volume, activation 
of vasoconstrictor systems, and extreme renal vasocon-
striction, which together result in a significant decrease 
in GFR [42]. Impaired kidney function will further lead 
to the accumulation of toxins, forming a vicious circle. 

In addition, INR is an indicator used to evaluate blood 
coagulation time. When liver function is compromised, 
the ability to synthesize coagulation factors decreases, 
and the normal coagulation process plays a crucial role in 
local control of infection [43]. The PIPC-mortality model 
includes ALB, GFR, WBC, CCI, INR, complication, sex, 
NIs, HDL, and Na as predictors. As previously reported, 
NIs were associated with an increased risk of mortality, 
and its inclusion in the PIPC-mortality model underscore 
the importance of NIs for patients with cirrhosis. Addi-
tionally, patients with a lower ALB had a higher risk of 
mortality that may be due to compromised nutritional 
status, impaired immune response, and increased sus-
ceptibility to infections [44]. Furthermore, the PIPC-
mortality model also confirmed that comorbidities and 
complications of cirrhosis could increase the risk of death 
in hospitalized patients [22].

Strengths
First, this study is a large, clinical cohort that incorporates 
routinely available clinical and demographic variables to 
predict NIs and prognosis of patients with cirrhosis. This 
implies that it can be directly applied to clinical practice 
and is readily available for further external validation in 
countries with routine data for such purposes. Second, 
we evaluated various types of machine learning mod-
els to compare their performance in modeling the same 
dataset, guiding us in selecting the final machine learning 
model for clinical applications. Third, we have developed 
an online calculator for established prediction models, 
which effectively overcomes the applicability challenges 
of machine learning models and makes them easy for 
clinical use.

Limitations
The study is subject to several limitations that warrant 
consideration. Firstly, the PIPC models are static mod-
els that assesses the risk of NIs and in-hospital mortal-
ity in hospitalized patients with cirrhosis based on data 
at the time of admission. However, a patient’s health sta-
tus may improve or deteriorate during their hospital stay, 
potentially affecting the likelihood of NIs and in-hospital 
mortality. The current models do not account for these 
dynamic changes in health status, which limits their pre-
dictive capability. Therefore, a future research direction 
could be to develop a dynamic prediction model capable 
of integrating dynamic parameters to reflect the real-time 
risk of patients more accurately during hospitalization. 
Secondly, the models were developed based on learn-
ing from input variables, and the presence of unknown 
or unregistered variables may impact results. Thirdly, 
due to the nature of machine learning algorithms, our 
predictive models do not establish causality. Therefore, 
interpreting the effects of individual factors in isolation 
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is cautioned, as they are integral components within the 
intricate interactions of the algorithmic prediction pro-
cess. Fourthly, the model has not yet been validated on a 
broader external dataset, which limits our ability to gen-
eralize the findings to more diverse patient populations 
and different clinical settings. Lastly, the retrospective 
design of this study introduces inherent biases, such as 
incomplete records and inconsistent data quality. Future 
research would benefit from a prospective design, allow-
ing for more controlled and systematic data collection.

In conclusion, our study indicates that our machine 
learning-driven prediction models exhibit superior per-
formance compared to previous models in predicting NIs 
and prognosis in patients with cirrhosis. The integration 
into an online calculator enhances accessibility, enabling 
healthcare providers to easily assess the risk of NIs and 
prognosis in hospitalized patients with cirrhosis.

Abbreviations
ACLF	� Acute-on-chronic liver failure
AKI	� Acute kidney injury
ALB	� Albumin
ALT	� Alanine aminotransferase
AST	� Aspartate aminotransferase
AUC	� Area under the curve
Adaboost	� Adaptive Boosting
BMI	� Body mass index
BUN	� Blood urea nitrogen
CA	� Community-acquired infection
CCI	� Charlson Comorbidity Index
CDC	� Centers for Disease Control and Prevention
CI	� Confidence Interval
CRP	� C-reactive protein
DT	� Decision Tree
EMRs	� Electronic medical records
ESCMID	� European Society of Clinical Microbiology and Infectious 

Diseases
ET	� Extremely randomized Tree
GFR	� Glomerular filtration rate
GGT	� Gamma-glutamyl transferase
HCA	� Health care-associated infection
HDL	� High-density lipoprotein
HE	� Hepatic encephalopathy
HRS	� Hepatorenal syndrome
ICU	� Intensive care unit
INR	� International normalized ratio
LDL	� Low-density lipoprotein
LR	� Logistic Regression
MAP	� Mean arterial pressure
MDR	� Multidrug Resistance
MELD	� Model for End-stage Liver Disease
NI	� Nosocomial infection
NLR	� Negative likelihood ratio
NN	� Neural Network
NPV	� Negative predictive value
PIPC	� Prediction of Nosocomial Infection and Prognosis in Cirrhotic 

patients
PLR	� Positive likelihood ratio
PLT	� Platelet
PPV	� Positive predictive value
PT	� Prothrombin time
RF	� Random Forest
ROC	� Receiver operating characteristic curve
Scr	� Serum creatinine
SpO2	� Oxygen saturation
TBIL	� Total bilirubin

TC	� Total cholesterol
TG	� Triglycerides
TRIPOD	� Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis
WBC	� White blood cell
XGBoost	� eXtreme Gradient Boosting

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13756-024-01444-y.

Supplementary Material 1

Acknowledgements
We highly appreciate the financial support from National Natural Science 
Foundation of China (72374179,71904170), the Fundamental Research Funds 
for the Central Universities (2022ZFJH003), Zhejiang University K. P. Chao’s 
High Technology Development Foundation(2022RC017), Mega-Project 
of National Science and Technology for the 13th Five-Year Plan of China 
(2018ZX10721102-003-006, 2018ZX10715013-003-003), and Zhejiang Province 
Healthcare Innovation Talent Program.

Author contributions
JW designed the study. SL, YZ, YL accessed and verified all the data. SL, LZ and 
KF analyzed the data and interpreted the results. SL, YZ, YL and JW wrote the 
manuscript. All authors revised the manuscript from the preliminary draft to 
submission. JW supervised the whole study. JW is responsible for the decision 
to submit the manuscript.

Funding
This study was funded by National Natural Science Foundation of China 
(72374179,71904170), the Fundamental Research Funds for the Central 
Universities (2022ZFJH003), Zhejiang University K. P. Chao’s High Technology 
Development Foundation(2022RC017), Mega-Project of National Science and 
Technology for the 13th Five-Year Plan of China (2018ZX10721102-003-006, 
2018ZX10715013-003-003), and Zhejiang Province Healthcare Innovation 
Talent Program.

Data availability
The data that support the findings of this study are not openly available due 
to reasons of privacy and are available from the corresponding author upon 
reasonable request.

Declarations

Ethics approval
The study protocol has been approved by the Ethics Committee of the First 
Affiliated Hospital of Zhejiang University.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 
National Clinical Research Center for Infectious Diseases, Collaborative 
Innovation Center for Diagnosis and Treatment of Infectious Diseases, 
The First Affiliated Hospital, School of Medicine, Zhejiang University, 
Hangzhou 310003, China
2Department of Infectious Diseases, the Second Affiliated Hospital, 
Zhejiang University School of Medicine, Hangzhou, China

Received: 23 April 2024 / Accepted: 27 July 2024

https://doi.org/10.1186/s13756-024-01444-y
https://doi.org/10.1186/s13756-024-01444-y


Page 12 of 12Li et al. Antimicrobial Resistance & Infection Control           (2024) 13:85 

References
1.	 Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J 

Hepatol. 2019;70(1):151–71.
2.	 Bajaj JS, Kamath PS, Reddy KR. The evolving challenge of infections in cir-

rhosis. N Engl J Med. 2021;384(24):2317–30.
3.	 Fernandez J, Acevedo J, Wiest R, et al. Bacterial and fungal infections in acute-

on-chronic liver failure: prevalence, characteristics and impact on prognosis. 
Gut. 2018;67(10):1870–80.

4.	 Wong F, Piano S, Singh V, et al. Clinical features and evolution of bacterial 
infection-related acute-on-chronic liver failure. J Hepatol. 2021;74(2):330–9.

5.	 Bonnel AR, Bunchorntavakul C, Reddy KR. Immune Dysfunction and infec-
tions in patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9(9):727–38.

6.	 Schultalbers M, Tergast TL, Simon N, et al. Frequency, characteristics and 
impact of multiple consecutive nosocomial infections in patients with 
decompensated liver cirrhosis and ascites. United Eur Gastroenterol J. 
2020;8(5):567–76.

7.	 European Association for the Study of the Liver. Electronic address eee, 
European Association for the study of the L: EASL Clinical Practice guidelines 
for the management of patients with decompensated cirrhosis. J Hepatol. 
2018;69(2):406–60.

8.	 Liao WC, Chung WS, Lo YC, et al. Changing epidemiology and prognosis of 
nosocomial bloodstream infection: a single-center retrospective study in 
Taiwan. J Microbiol Immunol Infect. 2022;55(6 Pt 2):1293–300.

9.	 Dionigi E, Garcovich M, Borzio M, et al. Bacterial infections change natural 
history of cirrhosis irrespective of Liver Disease Severity. Am J Gastroenterol. 
2017;112(4):588–96.

10.	 Bajaj JS, O’Leary JG, Tandon P, et al. Nosocomial infections are frequent and 
negatively impact outcomes in hospitalized patients with cirrhosis. Am J 
Gastroenterol. 2019;114(7):1091–100.

11.	 Griemsmann M, Tergast TL, Simon N, et al. Nosocomial infections in female 
compared with male patients with decompensated liver cirrhosis. Sci Rep-Uk. 
2022;12(1):3285.

12.	 Bajaj JS, Reddy KR, Tandon P, et al. Association of serum metabolites and gut 
microbiota at hospital admission with nosocomial infection development in 
patients with cirrhosis. Liver Transpl. 2022;28(12):1831–40.

13.	 Vazquez C, Gutierrez-Acevedo MN, Barbero S, et al. Clinical and micro-
biological characteristics of bacterial infections in patients with cirrhosis. 
A prospective cohort study from Argentina and Uruguay. Ann Hepatol. 
2023;28(4):101097.

14.	 Kimmann M, Tergast TL, Schultalbers M, et al. Sustained impact of 
nosocomial-acquired spontaneous bacterial peritonitis in different stages of 
decompensated liver cirrhosis. PLoS ONE. 2019;14(8):e0220666.

15.	 Fernandez J, Tandon P, Mensa J, et al. Antibiotic prophylaxis in cirrhosis: good 
and bad. Hepatology (Baltimore MD). 2016;63(6):2019–31.

16.	 Bartoletti M, Giannella M, Caraceni P, et al. Epidemiology and outcomes of 
bloodstream infection in patients with cirrhosis. J Hepatol. 2014;61(1):51–8.

17.	 European Association for the Study of the L. EASL clinical practice guidelines 
on the management of ascites, spontaneous bacterial peritonitis, and hepa-
torenal syndrome in cirrhosis. J Hepatol. 2010;53(3):397–417.

18.	 Cazzaniga M, Dionigi E, Gobbo G, et al. The systemic inflammatory response 
syndrome in cirrhotic patients: relationship with their in-hospital outcome. J 
Hepatol. 2009;51(3):475–82.

19.	 Piano S, Singh V, Caraceni P, et al. Epidemiology and effects of bacte-
rial infections in patients with cirrhosis Worldwide. Gastroenterology. 
2019;156(5):1368–e13801310.

20.	 Magiorakos APSA, Carey RB, Carmeli Y, et al. Multidrug-resistant, extensively 
drug-resistant and pandrug-resistant bacteria: an international expert pro-
posal for interim standard definitions for acquired resistance. Clin Microbiol 
Infect. 2012;18:268–81.

21.	 Bajaj JS, O’Leary JG, Reddy KR, et al. Second infections independently 
increase mortality in hospitalized patients with cirrhosis: the north American 
consortium for the study of end-stage liver disease (NACSELD) experience. 
Hepatology (Baltimore MD). 2012;56(6):2328–35.

22.	 Fernandez J, Acevedo J, Castro M, et al. Prevalence and risk factors of infec-
tions by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 
(Baltimore MD). 2012;55(5):1551–61.

23.	 Charlson MEPP, Ales KL, MacKenzie CR. A new method of classifying prog-
nostic comorbidity in longitudinal studies: development and validation. J 
Chronic Dis. 1987;40(5):373–83.

24.	 Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis (TRIPOD): the 
TRIPOD Statement. BMC Med. 2015;13:1.

25.	 Lee J, Westphal M, Vali Y, et al. Machine learning algorithm improves the 
detection of NASH (NAS-based) and at-risk NASH: a development and valida-
tion study. Hepatology (Baltimore MD). 2023;78(1):258–71.

26.	 An Z-Y, Wu Y-J, Hou Y, et al. A life-threatening bleeding prediction model 
for immune thrombocytopenia based on personalized machine learning: a 
nationwide prospective cohort study. Sci Bull. 2023;68(18):2106–14.

27.	 Yuan S, Sun Y, Xiao X et al. Using machine learning algorithms to Predict 
Candidaemia in ICU patients with New-Onset systemic inflammatory 
response syndrome. Front Med 2021, 8.

28.	 Tacconelli E, Göpel S, Gladstone BP, et al. Development and validation of 
BLOOMY prediction scores for 14-day and 6-month mortality in hospitalised 
adults with bloodstream infections: a multicentre, prospective, cohort study. 
Lancet Infect Dis. 2022;22(5):731–41.

29.	 Hernaez R, Karvellas CJ, Liu Y, et al. The novel SALT-M score predicts 1-year 
post-transplant mortality in patients with severe acute-on-chronic liver 
failure. J Hepatol. 2023;79(3):717–27.

30.	 Hirota Y, Shin JH, Sasaki N, et al. Development and validation of prediction 
models for the discharge destination of elderly patients with aspiration 
pneumonia. PLoS ONE. 2023;18(2):e0282272.

31.	 Steyerberg EWHFJ, Borsboom GJ, Eijkemans MJ, et al. Internal validation 
of predictive models: efficiency of some procedures for logistic regression 
analysis. J Clin Epidemiol. 2001;54(8):774–81.

32.	 Jones GD, Kariuki SM, Ngugi AK, et al. Development and validation of a 
diagnostic aid for convulsive epilepsy in sub-saharan Africa: a retrospective 
case-control study. Lancet Digit Health. 2023;5(4):e185–93.

33.	 Park H, Lo-Ciganic WH, Huang J, et al. Machine learning algorithms for 
predicting direct-acting antiviral treatment failure in chronic hepatitis C: an 
HCV-TARGET analysis. Hepatology (Baltimore MD). 2022;76(2):483–91.

34.	 Kanwal F, Taylor TJ, Kramer JR et al. Development, Validation, and evaluation 
of a simple machine learning model to Predict Cirrhosis Mortality. JAMA 
Netw Open 2020, 3(11).

35.	 Fernandez J, Prado V, Trebicka J, et al. Multidrug-resistant bacterial infections 
in patients with decompensated cirrhosis and with acute-on-chronic liver 
failure in Europe. J Hepatol. 2019;70(3):398–411.

36.	 Ferrarese A, Passigato N, Cusumano C, et al. Antibiotic prophylaxis in 
patients with cirrhosis: current evidence for clinical practice. World J Hepatol. 
2021;13(8):840–52.

37.	 Dirchwolf M, Marciano S, Martinez J, et al. Unresolved issues in the pro-
phylaxis of bacterial infections in patients with cirrhosis. World J Hepatol. 
2018;10(12):892–7.

38.	 Konig IR, Fuchs O, Hansen G et al. What is precision medicine? Eur Respir J 
2017, 50(4).

39.	 Su M, Guo J, Chen H, Huang J. Developing a machine learning prediction 
algorithm for early differentiation of urosepsis from urinary tract infection. 
Clin Chem Lab Med. 2023;61(3):521–9.

40.	 Deschênes MVJ. Risk factors for the development of bacterial infections in 
hospitalized patients with cirrhosis. Am J Gastroenterol. 1999;94(8):2193–7.

41.	 Huttunen RSJ. Obesity and the risk and outcome of infection. Int J Obes 
(Lond). 2013;37(3):333–40.

42.	 Francoz C, Durand F, Kahn JA, et al. Hepatorenal Syndrome. Clin J Am Soc 
Nephrol. 2019;14(5):774–81.

43.	 Colling ME, Tourdot BE, Kanthi Y. Inflammation, infection and venous throm-
boembolism. Circ Res. 2021;128(12):2017–36.

44.	 Akirov A, Masri-Iraqi H, Atamna A, et al. Low albumin levels are Associated 
with Mortality Risk in Hospitalized patients. Am J Med. 2017;130(12):1465.
e1411-1465 e1419.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Development and validation of prediction models for nosocomial infection and prognosis in hospitalized patients with cirrhosis
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Study design and participants
	﻿Definitions
	﻿Predictors and data collection
	﻿Data processing and variables selection
	﻿Development, validation, and evaluation of the models
	﻿Statistical analysis

	﻿Results
	﻿Patient characteristics
	﻿NIs profiles
	﻿Correlation analysis and variable importance ranking analysis
	﻿Performance of the machine learning models in predicting NIs
	﻿Performance of the machine learning models in predicting in-hospital mortality
	﻿Comparison of model performance with clinical existing models
	﻿Subgroup analysis

	﻿Discussion
	﻿Strengths
	﻿Limitations

	﻿References


