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Abstract
Background Surgical site infection (SSI) is an important cause of disease burden and healthcare costs. Fully 
manual surveillance is time-consuming and prone to subjectivity and inter-individual variability, which can be 
partly overcome by semi-automated surveillance. Algorithms used in orthopaedic SSI semi-automated surveillance 
have reported high sensitivity and important workload reduction. This study aimed to design and validate different 
algorithms to identify patients at high risk of SSI after hip or knee arthroplasty.

Methods Retrospective data from manual SSI surveillance between May 2015 and December 2017 were used as 
gold standard for validation. Knee and hip arthroplasty were included, patients were followed up for 90 days and 
European Centre for Disease Prevention and Control SSI classification was applied. Electronic health records data was 
used to generate different algorithms, considering combinations of the following variables: ≥1 positive culture, ≥ 3 
microbiological requests, antimicrobial therapy ≥ 7 days, length of hospital stay ≥ 14 days, orthopaedics readmission, 
orthopaedics surgery and emergency department attendance. Sensitivity, specificity, negative and predictive value, 
and workload reduction were calculated.

Results In total 1631 surgical procedures were included, of which 67.5% (n = 1101) in women; patients’ median age 
was 69 years (IQR 62 to 77) and median Charlson index 2 (IQR 1 to 3). Most surgeries were elective (92.5%; n = 1508) 
and half were hip arthroplasty (52.8%; n = 861). SSI incidence was 3.8% (n = 62), of which 64.5% were deep or organ/
space infections. Positive culture was the single variable with highest sensitivity (64.5%), followed by orthopaedic 
reintervention (59.7%). Twenty-four algorithms presented 90.3% sensitivity for all SSI types and 100% for deep and 
organ/space SSI. Workload reduction ranged from 59.7 to 67.7%. The algorithm including ≥ 3 microbiological requests, 
length of hospital stay ≥ 14 days and emergency department attendance, was one of the best options in terms of 
sensitivity, workload reduction and feasibility for implementation.
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Background
Surgical site infection (SSI) impose an important disease 
burden, being the third most common type of HAI in the 
last European Centre for Disease Prevention and Con-
trol (ECDC) Point Prevalence Study (PPS) (SSI: 16.6% 
EU/EEA and 17.5% Portugal) [1]. Last report from the 
ECDC HAI-Net SSI program estimated 1.2% SSI in hip 
surgery and 0.6% SSI in knee surgery at EU/EEA level [2]. 
SSI after orthopaedic surgery is also an important cause 
of healthcare costs, mainly driven by the extra bed-days 
during readmission [3].

Surveillance and feedback are one of the core compo-
nents of infection prevention and control (IPC) programs 
[4, 5]. Nevertheless, in the 2017 ECDC PPS only 52% of 
the 125 Portuguese hospitals included were participat-
ing in a national SSI surveillance network [6]. HAI sur-
veillance can be cumbersome and requires substantial 
resources, particularly when it is done fully manually, 
through chart review and ascertainment [7]. Results from 
the last ECDC PPS reports that only 35.7% of EU/EEA 
hospitals use some type of surveillance automation [1].

Automated surveillance (AS) may reduce surveillance 
manual workload by using routine care data from elec-
tronic health records (EHR) to identify patients at high 
risk for HAI. Besides reducing time and resources allo-
cated to chart review and data collection, automated sur-
veillance increases reliability and reproducibility of data 
by decreasing inter-individual variability in case classifi-
cation and surveillance bias; and allows almost real-time 
analysis and reporting, and facilitates quality improve-
ment [8–13]. In semi-automated surveillance, clinician’s 
involvement in HAI confirmation may increase their 
acceptability of surveillance results, when compared to 
fully automated surveillance [9–13].

AS in circumstances with low HAI incidence, such as 
SSI after orthopaedic surgery, can be particularly cost-
effective, since it is required to review a high number of 
records to identify a small number of patients with SSI 
[13, 14]. Several authors have developed algorithms for 
SSI surveillance in orthopaedic surgery based on EHR 
reporting sensitivity between 83.3% and 100%, and man-
ual workload reduction between 90.8% and 98% [14–19].

This study aimed to design and validate different semi-
automated algorithms based on data from EHRs, esti-
mate their sensitivity to identify patients at high risk 
for SSI after hip or knee arthroplasty and determine the 

workload reduction associated with their application in 
routine surveillance.

Methods
Study setting and design
Unidade Local de Saúde São João (ULSSJ) includes a 
tertiary hospital in the north of Portugal that performs 
around 600 knee and hip surgeries per year. Between 
2015 and 2018, ULSSJ participated in the national proj-
ect “STOP Infeção Hospitalar” (STOP hospital-acquired 
infection) aimed to reduce HAI, including SSI [20]. Dur-
ing this period, SSI surveillance in hip and knee arthro-
plasty was fully manual and performed by orthopaedic 
surgeons. A paper form was completed for all surgical 
procedures, including data about the surgical procedure, 
presence of SSI and its type (superficial, deep, organ/
space), according to the 2012 ECDC HAI-Net SSI 1.02 
protocol [21]. In a second phase, individual patient-level 
data was manually inserted in a dedicated electronic 
case report form and stored in a central national data-
base. Due to the excessive workload associated with this 
manual process and the disruption of healthcare services 
imposed by the pandemic, since 2018 SSI surveillance 
in ULSSJ has been on hold. This study used the retro-
spective data collected during the 2015–2018 manual 
surveillance period as the gold standard for algorithms 
validation.

Participants
All elective and urgent knee and hip arthroplasties 
between May 2015 and December 2017 were included. 
Surgical procedures were identified in the EHRs using 
the ICD-9 classification recommended by the ECDC 
HAI-NET SSI protocol: hip arthroplasty 00.70–00.73, 
00.85–00.87, 81.51–81.53; knee arthroplasty 00.80–00.84, 
81.54–81.55. Surgeries with these codes in the main pro-
cedures were included, regardless of being original pri-
mary or reintervention surgery. Patients were followed 
up for 90 days after surgery.

Algorithms definition
Initially, six variables were selected based on an algo-
rithm previously published and validated [14, 18, 19], 
in which some variable cut-offs were adjusted taking 
into consideration ULSSJ clinical practice. The variables 
included were:

Conclusions Different algorithms with high sensitivity to detect all types of SSI can be used in real life, tailored to 
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superficial SSI in semi-automated surveillance.
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1. One or more positive microbiological results.
2. Three or more microbiological samples collected 

(regardless of the results).
3. Seven or more days of in-hospital antimicrobial 

therapy.
4. Length of hospital stay ≥ 14 days during index surgery 

admission.
5. Hospital readmission in the Orthopaedics 

department.
6. Orthopaedic surgery reintervention.

In a first phase, these six variables were grouped into four 
categories, according to the algorithm previously pub-
lished, where patients fulfilling criteria in at least three 
categories were considered at high risk of SSI (Fig.  1 – 
Algorithm A) [14, 18, 19]. In a second phase, adapted 
algorithms were tested, based on discrepancy analysis 
(Fig.  1 – Algorithm B, C and D). In a third phase, dif-
ferent combinations of seven variables (including emer-
gency room attendance) were tested, where the presence 
of any of them in the 90 days after surgical procedure was 
considered high risk for SSI.

Data extraction from EHR and data linkage
Data for sample characterization and algorithm valida-
tion were extracted from EHRs by the Data Intelligence 
Service. Variables included were: demographic data (date 
of birth, sex), hospital admission (date of admission, 
department responsible for admission), surgical inter-
vention (ICD-9 code of orthopaedic intervention, date of 
intervention, urgent intervention, orthopaedic reinter-
vention), inpatient antibiotic therapy (duration), microbi-
ological results (positive bacteriological tests and number 
of requests), admission to emergency department, Charl-
son comorbidity index and American Society of Anaes-
thesiology (ASA) physical status classification system.

Microbiological data was limited to samples collected 
in orthopaedic SSI, namely bacteriologic or mycologic 
samples from blood, joint fluid, and exudate. Antimi-
crobial therapy included in-hospital antibiotics and anti-
fungals, oral or intravenous. When counting duration of 
vancomycin and amikacin therapy, intermittent doses 
less than 48 h apart were considered consecutive, to avoid 
excluding patients with renal function dose adjustments. 
Antibiotics for surgical prophylaxis were not considered.

From the manual surveillance database, the follow-
ing variables were used: demographic data (date of birth, 
sex), hospital admission (date of admission), surgical 

Fig. 1 Algorithms tested in the first and second phases (A, B, C and D)
Acronyms: ATB – antimicrobial therapy; LOS – length of hospital stay; SSI – surgical site infection. Algorithm A was based on an algorithm previously 
published [14, 18, 19]
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intervention (ICD-9 code of orthopaedic intervention, 
date of intervention, urgent intervention), ASA physical 
status classification system and SSI diagnosis (presence 
and type of infection). Surgical procedures from EHR 
data extraction and the manual surveillance databases 
were linked using the patient’s unique hospital ID and 
date of surgery.

Analysis
Frequencies and proportions were used to describe the 
sample characteristics, including missing data. Median 
and interquartile range were calculated to describe non-
normally distributed data.

After datasets linkage, surgeries from EHR data extrac-
tion not included in manual surveillance database were 
compared with surgeries included in the manual sur-
veillance to characterize the accuracy of the EHR data 
extraction procedure in identifying target surgeries and 
evaluate risk of selection bias in the manual surveillance.

Primary endpoint was all types of SSI (superficial, deep 
and organ/space, while secondary endpoint restricted 
the analysis to deep or organ/space infections. Sensitiv-
ity, specificity, positive predictive value, and negative pre-
dictive value were estimated for each possible algorithm, 
using the SSI diagnosis from manual surveillance data-
base as the gold standard. 95% confidence interval was 
calculated for each of these measures. STATA version 
16.1 was used in the data analysis.

Workload reduction, defined as the proportion of med-
ical records requiring manual review, was measured by 
the following equation:

 
Workload reduction = 1 − n high risk surgeries

n surgeries performed

Algorithm A false negatives and false positives were 
reviewed by an infectious diseases physician to identify 
possible algorithm gaps and misclassification in the man-
ual surveillance.

Results
Sample characteristics
In the total sample, 67.5% (n = 1101) of patients were 
women, and median age was 69 years (IQR 62 to 77). 
Most surgeries were elective (92.5%; n = 1508) and half 
were hip arthroplasty (52.8%; n = 861). Global SSI inci-
dence was 3.8% (n = 62), of which 64.5% were deep or 
organ/space infections (Table 1).

During the 90 days follow-up after surgery, 8.2% 
(n = 134) had at least one positive microbiological result, 
8.3% (n = 136) had ≥ 3 microbiological requests, 9.3% 
(n = 152) received antimicrobial therapy (ATB) ≥ 7 days, 
16.4% (n = 267) had length of hospital stay (LOS) ≥ 14 
days, 14.1% (n = 230) were readmitted to Orthopaedics 
department, 9% (n = 146) underwent Orthopaedic rein-
tervention and 17.7% (n = 288) attended the emergency 
department (Table 1).

Primary endpoint of all SSI types (superficial, deep and 
organ/space)
When tested individually, the variables with higher sensi-
tivity to detect all types of SSI were positive microbiolog-
ical culture and orthopaedic reintervention (64.5% and 
59.7%, respectively). At least 3 microbiological requests 
and ATB ≥ 7 days presented similar sensitivity (58.1%), 
while LOS ≥ 14 days was the criterion with the lowest 
sensitivity (29.0%) (Table 2).

From the algorithms described in Fig. 1, the one with 
better performance in terms of sensitivity was algorithm 
C with 85.5% sensitivity, 79.4% specificity, 99.3% NPV 
and 76.9% workload reduction. Algorithm A had a high 
workload reduction (91.7%), but low sensitivity to detect 
all types of infections (62.9%). Algorithm D presented the 
lowest sensitivity (32.3%) and highest workload reduction 
(97.1%) (Table 3).

When testing 136 different algorithms ranging from 
two to seven variables, in which at least one criterion 
needed to be present during follow-up, the highest sen-
sitivity reached was 90.3%, present in 24 different algo-
rithms. Workload reduction of these algorithms ranged 
from 59.7 to 67.7%, specificity from 61.6 to 70%, and 
negative predictive value from 99.4 to 99.5%. In all these 
options, emergency department visit was present in the 
model, to increase the sensitivity to detect superficial 
infections (Table 4).

Table 1 Study sample characteristics
Total sample 
(n = 1631)

Patient’s characteristics
Female, n (%) 1101 (67.5)
Hip surgery, n (%) 861 (52.8)
Elective surgery, n (%) 1508 (92.5)
Surgical site infection at 90 days, n (%) 62 (3.8)
Type of surgical site infection, n 
(%)

Superficial 22 (35.5)
Deep 27 (43.5)
Organ / space 13 (21.0)

Age (years), median (P25, P75) 69 (62, 77) 
(n = 1631)

Charlson index, median (P25, P75) 2 (1, 3) (n = 622)
ASA score, median (P25, P75) 2 (2, 2) (n = 483)
Algorithm variables (90 days after surgery)
Positive microbiological result, n (%) 134 (8.2)
≥ 3 microbiological requests, n (%) 136 (8.3)
Antimicrobial therapy ≥ 7 days, n (%) 152 (9.3)
Length of hospital stay ≥ 14 days, n (%) 267 (16.4)
Orthopaedics readmission, n (%) 230 (14.1)
Orthopaedics reintervention, n (%) 146 (9.0)
Emergency department, n (%) 288 (17.7)
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The algorithm with ≥ 3 microbiological requests, 
LOS ≥ 14 days and emergency department visit (from 
now on referred to as algorithm E) was the one with the 
higher sensitivity and a better balance between workload 
reduction and feasibility of implementation to detect all 
types of SSI (sensitivity 90.3%, workload reduction 67.7%, 
three variables in the model) (Table 4). Even though algo-
rithm E presented less workload reduction when com-
pared to algorithms A, B, C and D, it was the best option 
in terms of sensitivity and lowest number of variables 
(Fig. 2).

Secondary endpoint of deep and organ/space SSI
In the subgroup analysis of deep and organ/space infec-
tions, there was an overall increase in the sensitivity of all 
the variables when tested individually, except for emer-
gency department attendance, whose sensitivity changed 
from 54.8 to 50.0%. Individually, positive culture, at least 
3 microbiological requests, ATB ≥ 7 days and orthopae-
dic reintervention presented a sensitivity above 80%. 

LOS ≥ 14 days was the variable with the lowest sensitivity 
(37.5%) (Table 2).

Algorithm B detected deep and organ/space infections 
with 100% sensitivity, 70% specificity, 100% NPV and 
68.8% workload reduction (Table  3). Algorithms A and 
C also presented high sensitivity and workload reduc-
tion (algorithm A: sensitivity 95% and workload reduc-
tion 91.7%; algorithm C: sensitivity 97.5% and workload 
reduction 76.9%) (Table  3). All algorithms in Table  4 
had 100% sensitivity to detect deep and organ/space 
infections.

Selection bias assessment
During the study period, 1631 knee and hip surgeries 
were performed; however, 458 (28%) of them were not 
included in the manual surveillance database, probably 
due to selection bias. Patients excluded from the 2015–
2017 manual surveillance were older (71 vs. 69 years old) 
and had more frequently hip surgery (63.1% vs. 48.8%) 
when compared to patients included. Concerning the 
algorithm variables, patients excluded had more frequent 

Table 2 Sensitivity (Sens), specificity (Spec), positive predictive value (PPV) and negative predictive value (NPV) of each variable 
included in the algorithms

Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI)
Primary endpoint: all infections (superficial, deep and organ/space infections)
Positive culture 64.5 (62.2–66.8) 94.0 (92.9–95.2) 29.9 (27.6–32.1) 98.5 (98.0–99.1)
≥ 3 microbiological requests 58.1 (55.7–60.5) 93.6 (92.4–94.8) 26.5 (24.3–28.6) 98.3 (97.6–98.9)
Antimicrobial therapy ≥ 7 days 58.1 (55.7–60.5) 92.6 (91.3–93.9) 23.7 (21.6–25.8) 98.2 (97.6–98.9)
Length of hospital stay ≥ 14 days 29.0 (26.8–31.2) 84.1 (82.4–85.9) 6.7 (5.5–8.0) 96.8 (95.9–97.6)
Orthopaedics readmission 53.2 (50.8–55.7) 87.4 (85.8–89.1) 14.4 (12.7–16.1) 97.9 (97.2–98.6)
Orthopaedics re-intervention 59.7 (57.3–62.1) 93.1 (91.8–94.3) 25.3 (23.2–27.5) 98.3 (97.7–98.9)
Emergency department 54.8 (52.4–57.3) 83.8 (82.0–85.6) 11.8 (10.2–13.4) 97.9 (97.2–98.6)
Secondary endpoint: only deep and organ/space infections
Positive culture 87.5 (85.9–89.1) 93.8 (92.6–95.0) 26.1 (24.0–28.3) 99.7 (99.4–100.0)
≥ 3 microbiological requests 82.5 (80.7–84.3) 93.5 (92.3–94.7) 24.3 (22.2–26.4) 99.5 (99.2–99.9)
Antimicrobial therapy ≥ 7 days 85.0 (83.3–86.7) 92.6 (91.3- 93.99 22.4 (20.4–24.4) 99.6 (99.3–100.0)
Length of hospital stay ≥ 14 days 37.5 (35.2–39.9) 84.2 (82.4–85.9) 5.6 (4.5–6.7) 98.2 (97.5–98.8)
Orthopaedics readmission 72.5 (70.3–74.7) 87.4 (85.8–89.0) 12.6 (11.0–14.2) 99.2 (98.8–99.6)
Orthopaedics re-intervention 87.5 (85.9–89.1) 93.0 (91.8–94.3) 24.0 (22.0 ∼ 26.09 99.7 (99.4–100.09
Emergency department 50.0 (47.6–52.4) 83.2 (81.3–85.0) 6.9 (5.7–8.2) 98.5 (97.9–99.1)

Table 3 Sensitivity (Sens), specificity (Spec), positive predictive value (PPV), negative predictive value (NPV) and workload reduction 
for algorithms a, B, C and D
Algorithm Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Workload reduction (%)
Primary endpoint: all infection (superficial, deep and organ/space infections)
A 62.9 (60.6–65.3) 93.9 (92.7–95.0) 28.9 (26.7–31.1) 98.5 (97.9–99.1) 91.7
B 80.7 (78.7–82.6) 70.2 (68.0–72.5) 9.7 (8.2–11.1) 98.9 (98.4–99.4) 68.3
C 85.5 (83.8–87.2) 79.4 (77.5–81.4) 14.1 (12.4–15.8) 99.3 (98.9–99.7) 76.9
D 32.3 (30.0–34.5) 98.3 (97.7–98.9) 42.6 (40.2–45.0) 97.4 (96.6–98.1) 97.1
Secondary endpoint: only deep and organ/space infections
A 95.0 (93.9–96.1) 93.9 (92.7–95.1) 28.2 (26.0–30.3) 99.9 (99.7–100.0) 91.7
B 100.0 (100.0–100.0) 70.0 (67.8–72.2) 7.7 (6.4–9.0) 100.0 (100.0–100.0) 68.3
C 97.5 (96.7–98.3) 78.8 (76.8–80.8) 10.4 (8.9–11.9) 99.9 (99.8–100.0) 76.9
D 47.5 (45.1–49.9) 98.2 (97.6–98.9) 40.4 (38.0–42.8) 98.7 (98.1–99.2) 97.1
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Table 4 Workload reduction, specificity (Spec), positive predictive value (PPV) and negative predictive value (NPV) for 24 algorithms 
with 90.3% sensitivity for the primary endpoint (all SSI types: superficial, deep, organ/space)
Workload 
reduction 
(%)

Spec (95% 
CI)

PPV (95% 
CI)

NPV (95% 
CI)

Variables included in the algorithm
Positive 
culture

≥ 3 micro-
biological 
requests

ATB ≥ 7 
days

LOS ≥ 14 
days

Ortho-
paedics 
readmission

Orthopaedics 
re-intervention

Emergen-
cy depart-
ment

67.7* 70.0 
(67.8–72.2)

10.6 
(9.1–12.1)

99.5 
(99.1–99.8)

x x x

67.7 70.0 
(67.8–72.2)

10.6 
(9.1–12.1)

99.5 
(99.1–99.8)

x x x x

67.4 69.7 
(67.4–71.9)

10.5 
(9.0–12.0)

99.5 
(99.1–99.8)

x x x x

67.4 69.7 
(67.4–71.9)

10.5 
(9.0–12.0)

99.5 
(99.1–99.8)

x x x x

67.1 69.4 
(67.2–71.6)

10.5 
(9.0–11.9)

99.5 
(99.1–99.8)

x x x x x

66.9 69.2 
(66.9–71.4)

10.4 
(8.9–11.9)

99.5 
(99.1–99.8)

x x x x

66.6 68.8 
(66.6–71.1)

10.3 
(8.8–11.8)

99.5 
(99.1–99.8)

x x x x x

66.5 68.8 
(66.5–71.0)

10.3 
(8.8–11.7)

99.5 
(99.1–99.8)

x x x x

66.3 68.5 
(66.3–70.8)

10.2 
(8.7–11.7)

99.4 
(99.1–99.8)

x x x x x

66.2 68.5 
(66.2–70.7)

10.2 
(8.7–11.6)

99.4 
(99.1–99.8)

x x x x x

61.3 63.4 
(61.0–65.7)

8.9 
(7.5–10.3)

99.4 
(99.0–99.8)

x x x x

61.1 63.2 
(60.8–65.5)

8.8 
(7.5–10.2)

99.4 
(99.0–99.8)

x x x x

60.9 62.9 
(60.6–65.3)

8.8 
(7.4–10.2)

99.4 
(99.0–99.8)

x x x x x

60.9 63.0 
(60.6–65.3)

8.8 
(7.4–10.2)

99.4 
(99.0–99.8)

x x x x

60.6 62.7 
(60.3–65.0)

8.7 
(7.4–10.1)

99.4 
(99.0–99.8)

x x x x x

60.6 62.7 
(60.3–65.0)

8.7 
(7.4–10.1)

99.4 
(99.0–99.8)

x x x x x

60.5 62.5 
(60.1–64.8)

8.7 
(7.3–10.1)

99.4 
(99.0–99.8)

x x x x x

60.4 62.4 
(60.1–64.8)

8.7 
(7.3–10.0)

99.4 
(99.0–99.8)

x x x x x x

60.4 62.4 
(60.1–64.8)

8.7 
(7.3–10.0)

99.4 
(99.0–99.8)

x x x x x

60.2 62.1 
(59.8–64.5)

8.6 
(7.3–10.0)

99.4 
(99.0–99.8)

x x x x x x

60.2 62.1 
(59.8–64.5)

8.6 
(7.3–10.0)

99.4 
(99.0–99.8)

x x x x x

59.9 61.9 
(59.5–64.2)

8.6 
(7.2–9.9)

99.4 
(99.0–99.8)

x x x x x x

59.8 61.8 
(59.5–64.2)

8.6 
(7.2–9.9)

99.4 
(99.0–99.8)

x x x x x x

59.7 61.6 
(59.3–64.0)

8.5 
(7.2–9.9)

99.4 
(99.0–99.8)

x x x x x x x

Note: all these algorithms had 100% sensitivity to detect deep and organ space infections. Legend: *Algorithm E. Acronyms: ATB – antimicrobial therapy; LOS – 
length of hospital stay
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positive microbiological results (17.2% vs. 4.7%), at least 
3 microbiological requests (17.0% vs. 4.9%), ATB ≥ 7 days 
(19.0% vs. 5.5%), LOS ≥ 14 days (31.9% vs. 10.3%) and 
orthopaedic reintervention (16.8% vs. 5.9%), when com-
pared to patients included in the manual surveillance 
database (Supplementary material – Table 5).

Based on these findings, infectious diseases physicians 
reviewed and classified the presence of SSI according to 
the ECDC criteria in the 458 surgeries that were missing 
from manual surveillance database. The incidence of SSI 
was higher in the surgeries excluded from manual sur-
veillance (5.7 vs. 3.1), of which 46.1% were organ/space 
infections (2.8% of all SSI types identified in manual sur-
veillance) (Supplementary material – Table 5).

False negatives and positives review
During algorithm A false negatives review (cases not 
identified as high-risk by the algorithm, but with SSI in 
manual surveillance), four SSI were reclassified into no 
infection (three superficial and one organ/space), and 
two SSI were reclassified into organ/space infections 
(one superficial and one deep infection) (Supplementary 
material – Table 6). The patient with organ/space infec-
tion that was reclassified into no infection had indeed 
an SSI, but a couple of days after finishing the 90-day 

follow-up period. Additionally, 61% of the Algorithm A 
false negatives had at least one emergency department 
visit in the 90 days after surgery; as a consequence, this 
new component was added to the analysis.

Through the algorithm A false positives review (cases 
identified as high-risk by the algorithm, but without 
infection in the manual surveillance), six patients that 
were considered without infection in manual surveillance 
had indeed SSI (five deep and one organ/space infection) 
(Supplementary material – Table 6).

When re-testing the algorithms after false negatives 
and positives review, sensitivity slightly increased, par-
ticularly for detecting all SSI types (Supplementary mate-
rial – Table 7).

Discussion
In our study, we tested four variations of an algorithm 
previously published and 136 new different algorithm 
combinations of seven criteria to identify all SSI types 
after hip and knee arthroplasty. In this analysis, the 
highest sensitivity reached by the algorithms was 90.3%, 
attained by 24 algorithms, where at least one criterion 
needed to be fulfilled to be considered high risk of SSI. 
Workload reduction estimated with the application of 
any of these 24 algorithms ranged from 59.7 to 67.7%, and 

Fig. 2 Comparison of sensitivity and workload reduction between algorithms A, B, C, D and E
Note: each bubble corresponds to a different algorithm and the size of the bubble reflects the number of variables
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the number of variables needed to be analysed from three 
to six. Aiming for the highest sensitivity and balancing 
workload reduction and the feasibility of implementation, 
the most appealing algorithm seems to algorithm E that 
includes at least three microbiological requests, LOS ≥ 14 
days, and emergency department attendance (sensitivity 
90.3%; workload reduction 67.7%; three variables). Based 
on the data from our hospital which performs around 
600 hip and knee surgeries per year and assuming it takes 
around 15  min to review the medical records from one 
suspected SSI, we estimate that this algorithm can save 
102 h of IPC staff per year.

Results from previous publications presented high 
sensitivity to detect deep and organ/space SSI in hip 
and knee arthroplasty, excluding superficial SSI. Sips et 
al. tested it in a Dutch hospital with data from 2004 to 
2012 and reported 100% sensitivity with an estimated 
workload reduction of 95.4% [18]. Verberk et al. has 
expanded its application to four Dutch hospitals with 
data from 2012 to 2018 reporting a sensitivity between 
93.6 and 100% to detect deep SSI, with an expected work-
load reduction of 98% and 98.5% [14]. Van Rooden et al. 
has also applied this algorithm in two European hospi-
tals with data from 2017 to 2019, reporting a sensitivity 
that ranged from 83.3 to 100% and workload reduction 
between 96.9 and 97.5% [19]. In our cohort this algorithm 
A, which is the same published in these studies, yielded 
similar sensitivity with a slightly lower workload reduc-
tion, in the secondary endpoint of deep and organ/space 
infections (sensitivity 95.0%; workload reduction 91.7%). 
The differences in workload reduction may be due to the 
use of broader criteria in microbiological requests and 
antimicrobial therapy in our study. However, in our data, 
the performance of algorithm A to detect all types of 
SSI, including superficial SSI, was insufficient (sensitivity 
62.9%).

Perdiz et al. applied a slightly different algorithm in a 
Brazilian centre to identify patients with all types of SSI 
after hip and knee surgery, using data from 2009 to 2012 
[17]. The combinations with best performance (100% 
sensitivity) were: ATB ≥ 7 days or hospital readmission; 
and hospital readmission within 1 year after surgical 
procedure [17]. ICD-10 diagnosis codes suggestive of 
SSI yield a sensitivity of 87.5% and 100% in hip and knee 
surgery, respectively [17]. In our study we also tested 
the combination of ATB ≥ 7 days or hospital readmis-
sion, but its sensitivity to detect all types of SSI was lower 
(72.6%; data not presented). These differences may be 
because we restricted hospital readmission to the ortho-
paedics department within 90 days after surgery. In fact, 
the application of the single criteria Orthopaedics read-
mission presented a very low sensitivity (53.2%) in our 
study. Bolon et al. used the same variables as Perdiz et al., 
applied to 5 medical centres from USA between 2002 and 

2005 to identify all SSI types after hip and knee arthro-
plasty [15]. A combination of the three variables (ATB ≥ 7 
days, SSI diagnostic code or readmission) was the algo-
rithm with the overall best performance in both surgeries 
(hip surgery 93%, knee surgery 86%) [15].

Inacio et al. have also tested the applicability of ICD-9 
diagnostic codes extracted from EHR (inpatient and 
outpatient settings) to identify patients with total joint 
replacement SSI [16]. This study used data from 2006 to 
2008 from a large health maintenance organization in 
California and reported 96.7% sensitivity to detect any 
type of SSI based on ICD-9 diagnostic codes, with an 
expected workload reduction of 90.8% [16]. In our study, 
we decided not to use ICD-10 diagnosis codes because 
they are usually reviewed by the hospital coding team 
months after patient discharge, so it would be unpractical 
to apply an algorithm including this criterion in real life 
practice.

We have also demonstrated that semi-automated sur-
veillance can be more accurate and less susceptible to 
selection bias when compared to manual surveillance. 
When linking the data extracted from EHR with the ret-
rospective data from manual surveillance, we realized 
that 28% of the surgical procedures were excluded from 
manual surveillance and this subgroup of patients pre-
sented a higher incidence of SSI, particularly organ/space 
infections. The false positives review has also identified 
six patients with deep and organ/space SSI that were 
considered without infection in the manual surveillance, 
highlighting the advantages of using semi-automated 
algorithms to decrease inter-individual variability.

Our study has the advantage of providing different 
algorithms possibilities with high sensitivity to detect all 
types of SSI and with an acceptable workload reduction. 
This can improve the flexibility and feasibility of real-life 
semi-automated surveillance implementation, allow-
ing to use algorithms tailored to clinical practice and 
adapted to EHR data availability, and adjusting them to 
future changes in clinical practice. Additionally, we were 
able to identify a crucial variable to increase sensitivity 
to superficial SSI in our hospital, which is an important 
feature in algorithms to detect SSI after hip and knee sur-
geries, where superficial infections are usually treated as 
deep SSI [22–24]. It would be interesting to understand 
if emergency department attendance behaves similarly in 
other hospitals. We don’t expect superficial SSI incidence 
to be underestimated in our retrospective data due to loss 
of follow-up because all patients submitted to hip and 
knee arthroplasty had post-surgery consultations, where 
presence of SSI was registered by Orthopedic surgeons.

The main limitation of our study is the fact that we 
used a database for validation from 8 years ago. There 
may be differences in clinical practice, for example an 
earlier transition of intravenous to oral antibiotic therapy, 
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which may decrease the LOS and in-hospital ATB days 
and might compromise the algorithm’s performance 
nowadays [25]. The pandemic may have reduced LOS 
in all hospital departments to increase available beds for 
COVID-19 patients. All algorithms previously published 
used pre-pandemic data for validation, so it would be 
interesting to understand if these algorithms maintain 
their performance in the post-pandemic era. Addition-
ally, these algorithms were tested with data from a sin-
gle hospital, their performance could be different when 
applied to data from other hospitals.

Conclusion
Various algorithm combinations with high sensitivity 
were identified that can be used in real-life implemen-
tation of semi-automated surveillance. Semi-automatic 
surveillance should be validated and designed according 
to hospital practices. Our study has demonstrated that 
emergency department attendance can be an important 
variable to consider in algorithms to detect all types of 
SSI after hip and knee surgery.
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