

# **POSTER PRESENTATION**

**Open Access** 

# Determination of bacteria migration speed through urinary catheter systems in case of urostomy

FHH Brill<sup>1\*</sup>, H Braunwarth<sup>2</sup>, D Hegeholz<sup>2</sup>, W Droste<sup>3</sup>

From 3rd International Conference on Prevention and Infection Control (ICPIC 2015) Geneva, Switzerland. 16-19 June 2015

#### Introduction

Following a urostomy, the main aim from a hygiene perspective is to prevent bacteria from accumulating in the artificial drainage system (splint), e.g. as a result of contaminated urine. A return stop in the urostomy pouch keeps this risk to a minimum. In practice, however, splints are often pushed through the return stop to keep them more securely in place, which means that they may come into direct contact with the potentially contaminated urine.

### **Objectives**

The Objective was to study the migration speed of clinically-relevant bacteria in catheter systems used after urostomy.

#### **Methods**

We carried out an in-vitro experiment in a commercially-available uriniferous system applied in a urostomy. This involved connecting two storage vessels: the first containing splints which had previously been rinsed once with artificial urine; and the second containing a bacterial suspension of the test bacteria (*E. coli, P. aeruginosa* and *P. mirabilis*), which had previously been soaked in artificial, sterile urine. The two storage vessels were inclubated at 36 °C for 24 to 72 hours. The splints were cut into segments of 5 cm after 24 hours, 48 hours and 72 hours. The colony-forming units (CFU) on the pieces were determined. Each experiment was carried out nine times before the average values and standard deviations were subsequently determined.

#### **Results**

After 24 hours the bacteria migrated into the splint, on average, as follows: *E. coli* 26.7 cm ± 20.6, *S. aureus* 

27.2 cm  $\pm$  10.6 and *P. mirabilis* 12.8 cm  $\pm$  16.2. After 48 hours the bacteria migrated as follows: 35.0 cm  $\pm$  11.2 (*E. coli*), 51.7 cm  $\pm$  7.5 (*S. aureus*) and 41.7 cm  $\pm$  23.6 (*P. mirabilis*). The results after 72 hours were: 49.4 cm  $\pm$  14.5 (*E. coli*), 60 cm  $\pm$  16.0 (S. aureus) and 67.8 cm  $\pm$  3.6 (*P. mirabilis*).

#### Conclusion

The test bacteria grew relatively quickly through the catheter. It is likely that bacteria would grow through catheters with 80 cm length within a week at the latest. In this case, these is a direct infection risk for bladder and kidneys of the patient. These results should be taken into consideration during clinical use of the catheter systems in case urostomy.

## **Disclosure of interest**

F. Brill Grant/Research support from: partially by Coloplast; Germany., H. Braunwarth Employee of: Coloplast, Germany., D. Hegeholz Employee of: Coloplast, Germany., W. Droste: None declared.

#### Authors' details

<sup>1</sup>Dr. Brill + Partner Gmbh Institute for Hygiene and Microbiology, Hamburg, Germany. <sup>2</sup>Coloplast GmbH, Hamburg, Germany. <sup>3</sup>Private Consultant, Selm, Germany.

Published: 16 June 2015

doi:10.1186/2047-2994-4-S1-P219

Cite this article as: Brill et al.: Determination of bacteria migration speed through urinary catheter systems in case of urostomy. Antimicrobial Resistance and Infection Control 2015 4(Suppl 1):P219.

 $^{\rm T} {\rm Dr.~Brill} + {\rm Partner~Gmbh~Institute~for~Hygiene~and~Microbiology,~Hamburg,~Germany}$ 

Full list of author information is available at the end of the article

