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Abstract

Effective strategies to manage Burkholderia cepacia complex (Bcc) infections in cystic fibrosis (CF) patients are lacking.
We tested combinations of clinically available antibiotics and show that moxifloxacin-ceftazidime could inhibit 16 Bcc
clinical isolates at physiologically achievable concentrations. Adding low dose of colistin improved the efficacy of the
combo, especially at conditions mimicking CF respiratory secretions.
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Introduction

Respiratory failure secondary to chronic pulmonary bac-
terial infection remains the primary cause of mortality
and morbidity in cystic fibrosis (CF) patients [1]. We in-
vestigated the efficacy of non-standard antibiotic combi-
nations to combat multidrug resistant Burkholderia
cepacia complex (Bcc) bacteria. Bcc comprises a group
of closely related species of which B. cenocepacia, B.
multivorans, and B. contaminans are frequently isolated
from CF patients [2, 3]. Bcc infections cause faster de-
cline in lung function [4] and severely hinder post lung
transplant survival of CF patients [5-7].

Effective management strategies are lacking for Bcc
eradication in CF [8]. The EUCAST and the BSAC no lon-
ger provide recommendations for antimicrobial susceptibil-
ity testing against Bcc, while CLSI provides guidelines for
seven agents to test for therapeutic use against Bcc [9].
These include three P-lactams (ceftazidime, meropenem,
and ticarcillin-clavulanate), the fluoroquinolone levofloxa-
cin, and trimethoprim-sulfamethoxazole combo (co-tri-
moxazole) in addition to the bacteriostatic drugs
minocycline and chloramphenicol. New therapeutic solu-
tions are being explored [10-12], but until they can be
translated into clinical use, Bcc-infected patients are in dire
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need of effective therapeutics. We aimed to bridge this gap
by finding novel combinations of clinically available antibi-
otics that could eradicate Bcc bacteria at physiologically
relevant concentrations and could be readily used in pa-
tients. We focused on bactericidal antibiotics for which
CLSI guidelines exist as candidates for combination ther-
apy, avoiding previously tested combinations that showed
no synergy against Bcc [13—15].

Methods

B. cenocepacia K56-2 was isolated from a CF patient
in Canada and obtained from the B. cepacia Research
and Referral Repository for Canadian CF Clinics
(BCRRC); it is commonly used as a prototypic strain
of the B. cenocepacia ET-12 epidemic clonal lineage
[16]. A panel of 6 B. cenocepacia, 5 B. multivorans
and 4 B. contaminans strains were isolated from CF
patients. Bacteria were cultured in Luria-Bertani (LB) or
Mueller-Hinton broth (MHB) media at 37 °C. LB is com-
monly used to grow Bcc isolates in our laboratory, while
MHB is the recommended medium for standard anti-
microbial susceptibility testing. MIC was initially deter-
mined by Etest strips (BioMérieux Inc., St. Laurent, Qc,
Canada) as previously described [17].

Checkerboard assays were conducted with combina-
tions of antibiotics (obtained from Sigma, St Louis,
MO, USA) as previously described [10]. Initial assays
against B. cenocepacia K56-2 were conducted in LB
medium to select the most potent combination.
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Subsequent checkerboard assays of moxifloxacin-
ceftazidime in the presence or absence of 4 pg/ml co-
listin sulphate against a panel of B. cenocepacia, B.
multivorans and B. contaminans clinical isolates were
conducted in MHB as recommended by CLSI for
MIC testing by broth microdilution [18]. When accur-
ate MIC values could not be determined, as for colis-
tin methanesulfonate because Bcc bacteria grow at
concentrations greater than its solubility in growth
medium, the highest concentration tested was consid-
ered to be half the MIC value. Fractional inhibitory
concentration indices (FICI) were calculated as FICI =
A/MIC4 + B/MICg, where A and B are the concentra-
tions of two antibiotics required in combination to
inhibit bacterial growth and MIC, and MICg are the
MIC values for drugs A and B alone [19]. FICI data
were interpreted as ‘synergy’ (FICI <0.5), ‘antagonism’
(FICI >4.0), and ‘no interaction or indifference’ (FICI
1-4.0).

Artificial sputum medium (ASM) mimicking CF
sputum was prepared as described [20] with the ex-
ception that components of the medium were auto-
claved, filter-sterilized, or obtained already sterilized
(instead of adding antibiotics). 20 mg/ml mucin (instead
of 10 mg/ml) was added according to Quinn et al. [21].
Overnight cultures of B. cenocepacia K56-2 in LB medium
were diluted in sterile ASM with or without antibiotic(s) to
reach an inoculum equivalent to ODgy of 0.004
(~10° CFU/ml) and incubated at 37 °C without shaking.
Bacterial growth was assessed by CFU count on LB agar
plates at different time points.

Results and discussion

The MIC of individual antibiotics was first deter-
mined by Etest against B. cenocepacia K562 prior to
combination testing. We tested ceftazidime, a repre-
sentative B-lactam antibiotic that showed success in
inhaled formulations for treating P. aeruginosa lower
respiratory tract infections in CF patients [22], and
has activity against B. cenocepacia [14, 17, 23]. Cef-
tazidime showed an MIC of 128 pg/ml against K56—2
(Fig. 1a). We tested levofloxacin and other fluoroqui-
nolones from different generations; K56-2 displayed
lower resistance levels to them, with norfloxacin be-
ing the least potent (MIC =64 ug/ml) relative to the
tested newer generation agents especially moxifloxacin
(MIC=8 ug/ml) (Fig. la). Co-trimoxazole showed an
MIC of 16 pg/ml against the prototypic B. cenocepacia
isolate; whereas, K56—2 was highly resistant to colistin
(MIC >256 pg/ml) (Fig. 1a). Despite its lack of activity
against Bcc, colistin was included in the study owing to its
reported ability to permeabilize the cell envelope of
Gram-negative bacteria to other antibiotics [24, 25].
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Notably, the MIC of the tested antibiotics against K56—2
are above the CLSI clinical breakpoints for susceptibility.

Next, we conducted checkerboard assays for select
combinations against B. cenocepacia K56-2. Colistin
methanesulfonate (CMS) showed borderline synergism
with moxifloxacin (Fig. 1b). CMS is a less toxic prodrug
of colistin that is active in vitro and in vivo [26, 27];
4 pg/ml of CMS is equivalent to 1.5 pg/ml of colistin
base activity [28]. The trimethoprim-CMS combination
was synergistic whereas trimethoprim-moxifloxacin
showed indifference (Fig. 1b). Furthermore, ceftazidime
combinations with either moxifloxacin or CMS were
synergistic (Fig. 1b). Since the combination of moxiflox-
acin and CMS was also synergistic, these 3 antibiotics
(ceftazidime, moxifloxacin and CMS) were chosen for
further follow-up testing.

We further tested whether the synergistic effects of
these three antibiotics against K56-2 are reproducible
against other clinical isolates of Bcc bacteria and in MHB
following the CLSI guidelines. Checkerboard assays of
ceftazidime-moxifloxacin combinations showed similar
synergistic patterns against a panel of 7 B. cenocepacia, 5
B. multivorans and 4 B. contaminans in MHB (Fig. 1c).
Such synergism remained, or even further increased in
some cases, in the presence of 4 pg/ml colistin sulphate
(Fig. 1c). More importantly, these antibiotic combinations
inhibited the Bcc clinical isolates at or below the clinical
breakpoints set by CLSI when in combination but not in-
dividually in most cases (Fig. 1c). The CLSI breakpoints
are 8 pg/ml for ceftazidime; and 2 pg/ml for levofloxacin,
which is closely related to moxifloxacin, for Bcc [9].
Therefore, this shows promise that triple combination of
these antibiotics would eradicate Bcc at clinically achiev-
able concentrations.

To test the efficacy of these combinations in CF
sputum-like conditions, we used an artificial CF sputum
medium (ASM) and determined the CFUs of K56-2 at
different time points following treatment with the anti-
biotic combinations. Low antibiotic concentrations,
equivalent to the CLSI breakpoints where available
(8 ug/ml ceftazidime, 2 pug/ml moxifloxacin and 10 pg/
ml CMS), resulted in killing of only ~1-log at the 4 h
time-point compared to the initial inoculum (up to 2-log
less than the untreated control at the same time-point)
in ASM (Fig. 1d). Reduced antibiotic efficiencies in ASM
compared to LB and MHB is not unexpected given the
reported lack of correlation between in vitro susceptibil-
ity testing results performed in standard laboratory
media as MHB and the clinical outcome in CF patients
[29]. Therefore, higher antibiotic concentrations were
tested in ASM (Fig. 1e). Moxifloxacin (at 10 pg/ml) had
a bacteriostatic effect with no appreciable change in sur-
vival over 24 h compared to the initial inoculum (2-log
reduction in CFU compared to control at 24 h).
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Ceftazidime, pg/ml CMS, pg/ml Moxifloxacin, ug/ml
C No Colistin + 4 pg/ml Colistin Sulphate
Strain MIC alone MICin MIC alone MICin
combination FICI combination FICI
Mox Cef Mox Cef Mox Cef Mox Cef
B. cenocepacia
K56-2 4 128 2 2 0.515 4 128 1 16 0.375
1567 2 16 0.25 4 0.375 2 8 0.5 2 0.5
1571 4 128 0.5 8 0.1875 2 128 0.25 16 0.1875
1945 1 8 0.125 1 0.25 2 4 0.5 1 0.5
1921 256 128 2 32 0.2578 256 64 16 16 0.3125
1947 2 16 0.5 4 0.5 2 16 0.25 4 0.375
1946 4 16 1 0.5 0.2812 4 16 0.5 1 0.1875
B. multivorans
1566 0.5 4 0.25 0.25 0.5625 2 4 0.125 2 0.5625
1568 2 16 0.5 2 0.375 4 16 1 1 0.3125
1572 0.5 4 0.125 1 0.5 1 4 0.5 0.5 0.625
1573 8 8 0.5 0.5 0.125 8 8 0.5 0.5 0.125
1575 8 8 4 0.5 0.5625 8 8 2 1 0.375
B. contaminans
3830 0.5 64 0.125 4 0.3125 0.5 64 0.125 8 0.375
3831 8 128 4 4 0.531 8 128 4 16 0.625
3832 2 32 0.5 2 0.3125 2 32 0.5 2 0.3125
3833 4 64 1 2 0.2812 2 32 1 4 0.625
e 1010
10°=
Control 1084
Mox §107
Cef 5106_
CMS+Mox L
QMS+Cef 10°
-B- Mox+Cef 10
103 I 1 I I ~A—  VS+Mox+Cef 193 I . I I
0 6 12 18 24 0 6 12 18 24
Time, hr Time, hr
Fig. 1 Antibiotic combination testing against Bcc bacteria. a MIC by Etest against K56-2 at 24 h. b Checkerboard assays in LB medium against
K56-2. ¢ Checkerboards assays in MHB per CLSI microbroth dilution method against a panel of Bcc. d and e CFU counts in ASM; mean + SEM, n
=4 from 2 independent experiments. Antibiotic concentrations are: (d) 8 ug/ml ceftazidime (Cef), 2 pg/ml moxifloxacin (Mox) and 10 pg/ml CMS;
and (e) 16 pg/ml Cef, 10 ug/ml Mox and 20 pug/ml CMS

Ceftazidime at 16 pg/ml resulted in significant initial
killing of 2-log CFU from the starting inoculum (up to
3-log CFU reduction relative to the control at 6 h).
However, overgrowth of resistant cells occurred at 24 h
leading to only 1-log reduction compared to control

values at the same time-point and an increase of almost 2-
log CFU relative to the initial inoculum. Combining moxi-
floxacin with ceftazidime prevented overgrowth of resist-
ant cells and sustained the killing effect of ceftazidime
until 24 h (5-log reduction compared to the untreated
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control at 24 h). CMS at 20 pg/ml further reduced the
CFU by 1-log (3-log CFU Kkilling relative to the initial in-
oculum or 6-log total CFU reduction compared to un-
treated control at 24 h) when combined with moxifloxacin
and ceftazidime (Fig. le). These concentrations, al-
though slightly above the CLSI breakpoints, are
physiologically achievable in respiratory fluids and tis-
sues (see FDA documents available for moxifloxacin
[30] and for ceftazidime [31]).

In summary, we report novel double and triple antibiotic
combinations that inhibit Bcc bacteria at physiologically
achievable concentrations and hence could be ready for
immediate use in patients. In addition, nanotechnology-
based novel respiratory delivery systems may deliver even
higher doses of these antibiotics at the local site of infec-
tion. For example, a pilot trial of long-term administration
of tobramycin inhalation powder delivered using a Podha-
ler has shown some promise for CF patients chronically in-
fected with Bcc [32], despite the low efficiency of
tobramycin against Bcc in vitro [33]. We then propose
these combinations as ideal targets for experimental
screening of novel antibiotic adjuvants for enhanced effi-
cacy against Bcc bacteria.
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