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Background: The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related
infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic
acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro.

Methods: S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following
high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered
glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by
transmission and scanning electron microscopy. A Student’s t test was performed to compare the exposure time

Results: PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms.
OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively (p < 0.01).
Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min.

Conclusions: Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms.
Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA
exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings
indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings
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Background

Biofilms protect bacteria from stress or stimuli by pro-
viding a thick layer of extracellular proteins [1]. Biofilm
in bacterial communities is formed through initial and
irreversible attachment, microcolony formation, biofilm
maturation, and biofilm dispersion [2]. Biofilm matrix
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comprises polysaccharides, proteins, and nucleic acids
that can be dissolved by enzymatic degradation [3].
Proteinaceous components, such as the non-ribosomally
generated peptide aureusimine (phevalin) in Staphylo-
coccus aureus [4] and three exopolysaccharides (Psl, Pel,
and alginate) in Pseudomonas aeruginosa [2, 3], play
important roles in biofilm structural maintenance and
are highly resistant to antibiotics and disinfectants. The
biofilm-forming bacteria S. aureus and P. aeruginosa are
major opportunistic pathogens implicated in hospital-
acquired infections; these bacteria are additionally
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known to promote the spread of chronic diseases, includ-
ing osteomyelitis and endocarditis, contaminate medical
device implants, and persist in lung cystic fibrosis [2, 4].
Specifically, endoscopy-related infections caused by
biofilm adhesion within the narrow luminal cavities of
endoscope channels are attributed to inadequate cleaning
routines and ineffective disinfection procedures [5, 6]
despite adherence to guideline recommendations [7, 8].
These are often reported in conjunction with pseudo-
outbreaks of biofilm-producing bacteria [9-11]. Addition-
ally, biofilms are recalcitrant to endoscope reprocessing,
resulting in infection by P. aeruginosa and Mycobacterium
chelonae isolates, such as those with high resistance to
glutaraldehyde (GA) [12, 13].

In order to effectively remove biofilms from endoscope
channels, automated endoscope reprocessors (AERSs)
have become widespread in Japan, particularly in com-
bination with novel high-level disinfectants (HLDs) such
as peracetic acid (PAA) and ortho-phthalaldehyde
(OPA); these broad-spectrum disinfectants have replaced
GA [14-16]. The exposure time required for bactericidal
effectiveness of HLDs, according to current Japanese
multisociety guides on reprocessing flexible GI endo-
scopes, is routinely recommended as 5 min for 0.3%
PAA, 10 min for 0.55% OPA, and 10 min for 2.0% GA.
Other guidelines state that this duration is dependent on
the concentration of the specific HLDs [17-19]. In
addition, the ability of OPA to fix stains (bacterial
proteins or biofilms) onto materials [20, 21] and involve-
ment of efflux as a GA resistance mechanism in P.
fluorescens and P. aeruginosa biofilms [22] have been
reported; however, the mechanism associated with PAA
activity, specifically its ability to fix or remove biofilms
from materials, is not completely understood. Further-
more, to date, comparison of the exposure times for bac-
tericidal effectiveness of PAA and OPA against biofilms,
under the same conditions, has not been attempted.

Here, we investigated the exposure time for bacteri-
cidal effectiveness of three HLDs used in Japan, using in
vitro biofilm models. The study aimed to examine AMR
outcomes associated with biofilms, including in drug-
resistant strains, and to visualize the bacterial inner-cell
and outer-surface morphological structures by electron
microscopy. The findings offer novel insights into PAA
activity against biofilms.

Methods

Bacterial strains and biofilm growth conditions

Strains used in this study included S. aureus isolates
ATCC 29213, ATCC 25923, 209P, TT-UA-1, MK99-1,
MK99-2, MK99-3, MK99-4, MK99-5, MK99-6,
MK99-7, and MK99-8; and P. aeruginosa isolates
ATCC 33348, ATCC 27853, E7, 16-45, 10-49, 14-57,
27-08, 27-122, 31-56, 4-37, 4-6, and 1-95. Prior to
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use, strains were stored at —-80 °C. All strains were first
subcultured and then diluted to 10° colony-forming
units (CFU)/mL in Mueller-Hinton broth (MHB; Difco,
BD Biosciences, San Jose, CA, USA) for subsequent cul-
tivation with catheter tubes at 35 °C in a horizontal
shaking incubator. Each polyvinyl chloride catheter tube
(diameter, 5 mm; Terumo, Tokyo, Japan) was cut into
10-mm-long round slices and sterilized prior to biofilm
growth. Mature biofilms were obtained after 7 days of
incubation (data not shown) and initial inoculation of
1.5 x 108 CFU to 5.0 x 10® CFU per tube.

Chemical disinfectant preparation

Each disinfectant was diluted with sterile water accord-
ing to manufacturers’ instructions: 0.3% PAA (6%
Acecide; Saraya Co., Ltd., Osaka, Japan), 0.55% OPA
(undiluted Disopa; Johnson & Johnson, Pittsburgh, PA,
USA), 2.0% GA (20% Sterihyde; Maruishi Pharmaceut-
ical Co., Ltd., Osaka, Japan) for endoscopy HLD, or 0.1%
sodium hypochlorite solution (NaClO; 1% Yakulax;
Yakuhan Pharmaceutical Co., Ltd., Hokkaido, Japan);
chlorine levels that are safe for environmental disinfec-
tion at comparable standard formulations were used.
Sterile distilled water (SDW) was used as a positive
control for diluted disinfectant testing.

In vitro biofilm models

Prior to disinfection, laboratory-grown mature biofilms
accumulated in plastic tubing were transferred to 5-mL
sterile test tubes, followed by transfer of 2 mL of disin-
fectant into each test tube for gentle mixing. Test
samples were exposed for 1, 2, 5, 10, 15, 30, and 60 min;
immediately after treatment, biofilms were carefully
rinsed twice with phosphate-buffered saline (PBS;
pH 7.4) to inactivate the drug and remove floating
bacteria. The bactericidal effects were assessed after
incubating each tubing sample at 35 °C for 2 days and
visually determining the presence of a bacterial suspen-
sion. Bacterial growth was confirmed by agar-plate incu-
bation. Every experiment included a positive control
biofilm culture and non-inoculated MHB as a negative
control, and was performed five times.

Transmission electron microscopy (TEM)

S. aureus 209P and P. aeruginosa E7 strains were
selected for microscopic observation, because they pro-
duced more biofilm matrix than other cultures in this
study. As previously described, biofilms were exposed to
0.3% PAA and 2.0% GA for 5 min and 30 min. Immedi-
ately after treatment, S. aureus and P. aeruginosa
biofilms were rinsed with PBS (pH 7.4) and 0.1 M
cacodylic acid buffer solution (pH 7.2), respectively.
Samples were fixed overnight with 2.5% electron
microscope-grade GA and 0.1% uranium acetate,
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followed by fixation with 1.0% osmium tetroxide and
1.0% tryptophan for 5 h. Samples were then washed with
0.1% tannic acid buffer, dehydrated in a graded ethanol
series, and embedded in Epon 812 resin by polymerization
at 60 °C. Samples were cut with an ultra-microtome fitted
with a glass knife, stained with 5.0% uranium acetate for
15 min and 0.1% lead citrate for 5 min at 20 °C, coated
with carbon, and observed under a JEM-1200EX TEM
(Jeol Ltd., Tokyo, Japan) at 80 kV.

Scanning electron microscopy (SEM)

S. aureus 209P and P. aeruginosa E7 biofilms were
prepared following the same protocol as described for
TEM observation. Samples were fixed for 2 h at room
temperature, first with 2.5% electron microscope-grade
GA and then with 1.0% osmium tetroxide. Samples were
then washed with 0.1% tannic acid buffer, dehydrated in
a graded ethanol series, and dried in a critical point
dryer with isoamyl acetate and carbon dioxide. Samples
were set on a stand using carbon tape coated with plat-
inum and observed under a S-4500 SEM (Hitachi,
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Tokyo, Japan) at 15 kV to 20 kV (at least 10 fields/
biofilm).

Statistical analysis

Complete bactericidal activity was defined as the absence
of bacterial suspensions in all five experiments for each
exposure time. A Student’s ¢ test was performed to
compare exposure times for bactericidal effectiveness
between disinfectants and the control. P < 0.05 was con-
sidered significant, and the results were analyzed using
Microsoft Excel (Microsoft, Co., Redmond, WA, USA).

Results

Biofilm resistance to disinfectants

The bactericidal effects of 0.3% PAA, 0.55% OPA, 2.0%
GA, and 0.1% NaClO against 12 S. aureus and 12 P. aer-
uginosa biofilms accumulated on tubing for 7 days was
tested. PAA showed the most rapid killing of all 24
strains (within 1 min) (Fig. 1). In contrast, it took 5 min
for 100% bactericidal activity to be achieved with GA,
and 15 min (S. aureus) and 60 min (P. aeruginosa) with
OPA. Compared with NaClO, OPA was particularly
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Fig. 1 Bactericidal effects of high-level disinfectants (HLDs). 0.3% peracetic acid (PAA), 20% glutaraldehyde (GA), and 0.55% ortho-phthalaldehyde (OPA)
against (a) Staphylococcus aureus and (b) Pseudomonas aeruginosa biofilms in tubing. We used 0.1% sodium hypochlorite (NaClO) as a comparable standard
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ineffective, as judged by the amount of remaining
biofilm mass and weaker activity relative to that of GA
(P=0.0159). P. aeruginosa biofilm was more resistant
than S. aureus biofilm to OPA and NaClO (P<0.01),
whereas no significant differences were observed
between biofilms treated with PAA and GA (P = 0.1846).

Morphological observation by TEM and SEM

The mechanisms of action of PAA and GA against S.
aureus and P. aeruginosa biofilms were determined by
morphological observation using TEM (Fig. 2) and SEM
(Fig. 3). TEM results showed that the control biofilms
were devoid of artifacts, and PAA elicited the appear-
ance of bleb-like bulges after 5 min and collapsed cell
structures after 30 min. The observed differences be-
tween S. aureus and P. aeruginosa biofilms were partially
based on discrepancies in bacterial structures such as
the cell wall. SEM analysis showed that control biofilms
presented mature surfaces devoid of brittleness, fissures,
cracks, grooves, pores, erosion, pits, or peeling of the
catheter surface. PAA caused cell-cortex damage after
5 min and cell-structure compression after 30 min. Both
TEM and SEM results indicated that GA-treated
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biofilms were firmly fixed. Additionally, the duration of
antiseptic activity appeared similar for both S. aureus
and P. aeruginosa biofilms following treatment with
PAA. Notably, SEM microphotographs revealed reduced
biofilm coating on catheter surfaces following treatment
with PAA.

Discussion

Our study is the first to utilize TEM and SEM to docu-
ment biofilm formation and investigate the bactericidal
effects of PAA. Our in vitro biofilm models exhibited
mature biofilm development inside a narrow catheter
lumen, as reported previously, thus mimicking biofilm
formation inside the endoscope channel [23]. Notably,
different HLDs presented varying bactericidal effects on
S. aureus and P. aeruginosa biofilms in our in vitro
biofilm models. Accordingly, PAA had the most rapid
bactericidal activity (< 1 min), in line with a report by
Tote et al. [24]. In contrast, OPA required >10 min and
30 min to completely eradicate S. aureus and P. aerugi-
nosa biofilms, respectively. These results indicate that P.
aeruginosa shows reduced susceptibility to OPA due to
overproduction of biofilm matrix components [25]. The
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Fig. 2 Transmission electron photomicrographs: Staphylococcus aureus 209P (top) and Pseudomonas aeruginosa E7 (bottom) biofilm in tubing: (a, €)
before treatment, (b, f) after a 5-min and (¢, g) 30-min treatment with peracetic acid (PAA), and (d, h) after a 30-min treatment with glutaraldehyde
(GA). Compared with GA, treatment with PAA resulted in gradual cell-structure collapse (S. aureus) and evident bleb-like bulges indicating cell damage
(P. aeruginosa)
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Fig. 3 Scanning electron photomicrographs: Staphylococcus aureus 209P (top) and Pseudomonas aeruginosa E7 (bottom) biofilm in tubing: (a, €)
before treatment, (b, f) after a 5-min and (c, g) 30-min treatment with peracetic acid (PAA), and (d, h) after a 30-min treatment with glutaraldehyde
(GA). Compared with GA, treatment with PAA resulted in gradual reduction in bacterial internal pressure, followed by destruction of mashed cell
surfaces (S. aureus), reduced bacterial aggregation, and decreases in biofilm matrix components (P. aeruginosa)
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P. aeruginosa biofilm is comprised of bacteria embedded
in a matrix of extracellular polymeric substances, which
functions as both a structural scaffold and/or as a pro-
tective barrier against harsh environments. Alginate or
other polysaccharides have been identified as the main
matrix ingredients in P. aeruginosa biofilms, with im-
portant roles in structural maintenance and AMR [2].
Additional compounds affecting biofilm matrix and
tolerance of P. aeruginosa biofilms to OPA are currently
being investigated. Polysaccharide intercellular adhesin
has also been described as a major proteinaceous com-
ponent of the S. aureus biofilm matrix, which is also rich
in teichoic acids [4]. Other cellular components are
likely to be present, and await further investigation. To
address a study limitation, our future work will investi-
gate the influence of HLDs on several known biofilm
matrices from other bacterial strains. However, as disin-
fection exposure time recommended by guidelines for
endoscope reprocessing may differ by biofilm matrix, as
indicated by testing OPA in this study, it would be
necessary to select an HLD with stronger and fast-acting
bactericidal effects, such PAA, in practical use.

Although mature S. aureus and P. aeruginosa biofilms
are characterized by production of matrix components
that hinder biofilm killing, PAA appears to be an effect-
ive disinfectant. TEM and SEM observations enabled a
comparative analysis of the mechanism of action of
PAA, revealing changes in shape after 5 min and

structural damage after 30 min. In the current report,
mature P. aeruginosa biofilms aged 96 h were eradicated
at 3000 ppm (0.3%) of PAA after 5-min exposure [26].
Our findings indicate that the exposure time for effective
bactericidal activity is 5 min under high concentrations
of HLD, e.g., 0.3% PAA.

These alterations might be caused by a sharp decrease
in bacterial inner pressure resulting from high perme-
ability to PAA for a short period. Additionally, PAA is
thought to act as an oxidizing agent by releasing
hydroxyl radicals, which subsequently attack essential
biofilm matrix components [27-29]. To date, no PAA-
resistance mechanisms have been reported for either cell
suspensions or biofilms. Here, spectroscopic measure-
ments of bacterial survival correlated well with TEM
and SEM observations of biofilm structures and surfaces.
This in vitro biofilm model associated with electron
microscopy represents an effective tool to investigate the
mechanistic action of disinfectants such as PAA. Future
work on biofilm formation should help elucidate the
nature of interactions under changing environmental
conditions (e.g., pH) or in the presence of plasma for
various durations of exposure.

In summary, we found that PAA is a useful HLD for
endoscope channel reprocessing, even in the presence of
strongly adhering bacterial biofilms. The current
developments should allow for shorter exposure time for
effective bactericidal activity during endoscope reprocessing
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in healthcare settings. This is expected to enable the
prevention of endoscopy-related infections resulting from
potential contamination by S. aureus and P. aeruginosa
biofilms.

Conclusions

Morphological observations of in vitro biofilm models
by electron microscopy showed that PAA exhibited
more rapid bactericidal effects than OPA or GA against
S. aureus and P. aeruginosa biofilms, which are associ-
ated with endoscopy-related infections. Therefore, these
findings suggest that PAA has fast-acting effects against
S. aureus and P. aeruginosa biofilms.
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