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Abstract

Microbial resistance to classical antibiotics and its rapid progression have raised serious concern in the treatment of
infectious diseases. Recently, many studies have been directed towards finding promising solutions to overcome these
problems. Phytochemicals have exerted potential antibacterial activities against sensitive and resistant pathogens via
different mechanisms of action. In this review, we have summarized the main antibiotic resistance mechanisms of
bacteria and also discussed how phytochemicals belonging to different chemical classes could reverse the antibiotic
resistance. Next to containing direct antimicrobial activities, some of them have exerted in vitro synergistic effects
when being combined with conventional antibiotics. Considering these facts, it could be stated that phytochemicals
represent a valuable source of bioactive compounds with potent antimicrobial activities.

Keywords: Antibiotic-resistant, Antimicrobial activity, Combination therapy, Mechanism of action, Natural products,
Phytochemicals

Introduction
Today’s, microbial infections, resistance to antibiotic
drugs, have been the biggest challenges, which threaten
the health of societies. Microbial infections are responsible
for millions of deaths every year worldwide. In 2013, 9.2
million deaths have been reported because of infections
i.e. about 17% of total deaths [1, 2]. The occurrence of the
evolution of resistance has caused the existing antibacter-
ial drugs to become less effective or even ineffective [3, 4].
In recent years, various strategies have been suggested to
overcome the resistance of antibiotics. One of the recom-
mended strategies to achieve this goal has involved the
combination of other molecules with the failing antibi-
otics, which apparently restores the desirable antibacterial
activity [5, 6]. These molecules can be non-antibiotic
drugs with potential antibacterial properties that can cre-
ate opportunities for innovative therapeutic approaches
[7]. In regards to this case, phytochemicals have exhibited
potent activities while many researchers have used natural
products to act against bacterial resistance [8–11]. These
agents can act alone or in combination with antibiotics to
enhance the antibacterial activity against a wide range of

bacteria [10, 12–14]. However, up to this date, the
structure-activity relationships and mechanisms of action
of natural compounds have largely remained elusive. In
the present review, we have focused on describing the re-
lationship between the structure of natural compounds
and their possible mechanism of action.

Mechanisms of antibacterial activity and resistance
The antibacterial activity of an agent is mainly attributed to
two mechanisms, which include interfering chemically with
the synthesis or function of vital components of bacteria,
and/or circumventing the conventional mechanisms of
antibacterial resistance. Figure 1 shows these mechanisms
and as it can be observed, there are multiple targets for the
antibacterial agents that comprise (Ι) bacterial protein bio-
synthesis; (ΙΙ) bacterial cell-wall biosynthesis; (ΙΙΙ) bacterial
cell membrane destruction; (ΙV) bacterial DNA replication
and repair, and (V) inhibition of a metabolic pathway.
In addition, bacteria may show resistance to antibacter-

ial agents through a variety of mechanisms. Some bacterial
species are innately resistant to one or more classes of
antimicrobial agents. In these cases, all strains of that bac-
terial species exhibit resistant to all the members of those
antibacterial classes. A major concern is that the bacteria
acquire resistance, where initially susceptible bacterial
populations become resistant to the antibacterial agent
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[15]. So that, one of the key factors in finding the solutions
for slowing the development of antibiotic-resistant is
knowing about the mechanisms of antibacterial resistance
[16], which mainly include the activation of efflux pump,
destroying the antibacterial agents through the destruction
enzymes, modification of antibiotics by the means of modi-
fying enzymes, and the alteration of target structures in the
bacterium which have lower affinity for antibacterial recog-
nition [8]. It should be also noted that the resistance to
antibacterial agents can be related to one kind of mechan-
ism or different types together. The main mechanism for
spreading the resistance of antibiotic through bacterial
populations is plasmids in the role of genetic material,
which are capable of being independently replicated and
passed between bacterial cells and species.
Each of these mechanisms has been separately dis-

cussed in the following.

Mechanisms of action of antibacterial agents
Bacterial protein biosynthesis
There is a vast number of molecular steps involved in
initiation, elongation, and termination of protein assembly
by the bacterial ribosome. Therefore, the inhibition of pro-
tein synthesis by targeting the ribosomal subunits is an
effective approach to combat bacterial infections. Important
classes of antibiotics such as macrolides, tetracyclines,

aminoglycosides, and oxazolidinones show antibacterial ac-
tivities through this particular mechanism [17].

Cell-wall biosynthesis
The bacterial cell wall layer stands as a proven target for
antibacterial agents, which consists a network of peptide
and glycan strands that are covalently cross-linked to each
other and can provide higher mechanical strength for os-
motic lysis. There are two types of family enzymes that
have critical roles in the formation of this layer, which in-
clude transglycosylases and transpeptidases while their
functionality has been previously described. Bifunctional
enzymes that contain both domains of transpeptidase and
transglycosylase are suitable targets for bactericidal antibi-
otics including penicillins and cephalosporins. The family
of Glycopeptide antibiotic, such as vancomycin, has been
also observed to target the peptidoglycan layer within cell-
wall assembly through another way. These antibiotics are
able to tie up the peptide substrate of peptidoglycan layer
and thus, prevent the occurrence of a reaction with en-
zymes. However, the net effect is quite similar, which re-
duces the cross-linking of peptidoglycan and consequently
weaken the cell wall [18].
Filamenting temperature-sensitive mutant Z (FtsZ) is

the first protein to move towards the division site during
the process of cell division. This protein is necessary for
recruiting other proteins that ultimately produce a new

Fig. 1 a Proven targets for antibacterial drugs. Protein biosynthesis at the ribosome is targeted by different classes of antibiotics such as macrolides,
tetracyclines, aminoglycosides. Cell membrane can be targeted by some antibiotics such as Polymyxin B. These antibiotics alter bacterial outer membrane
permeability and finally destabilize outer membrane of bacteria. The fluoroquinolone antibiotics inhibit DNA replication by trapping a complex of DNA
bound to the enzyme DNA Gyrase. Cell-wall biosynthesis is inhibited by the various classes of antibiotics. b Multiple antibiotic resistance mechanisms in
bacteria. Efflux pumps remove the antibiotics from bacteria (e.g. Fluoroquinolones and trimethoprim resistance in P. aeruginosa). Destruction enzymes that
degrade the antibiotics (β-lactams in Enterobacteriaceae). Modifying enzymes which change the antibiotic structure (e.g. chloramphenicol or fosfomycin in
P. aeruginosa)
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cell wall between the dividing bacterial cells [19]. So far,
one of the promising approaches for the purpose of com-
bating bacterial infections has been the procedure of tar-
geting at the inhibition of bacterial cell division, which is
carried out by controlling the FtsZ functionality.

Inhibiting nucleic acid synthesis
DNA gyrase is known as the enzyme that is responsible
for performing the supercoiling and uncoiling of bacter-
ial DNA and DNA replication. This enzyme is essential
for synthesis, replication, repair, and transcription proce-
dures and consequently, gyrase can be considered as a
fine target for antibacterial agents and antibiotics includ-
ing nalidixic acid, as well as fluoroquinolones such as
ciprofloxacin [20].

Destruction of bacterial membrane
Various antibiotics, such as polymyxins, can bind to the
lipid A component of lipopolysaccharide and therefore,
cause structural alterations by the means of phospho-
lipid exchange that would result in an osmotic imbal-
ance and finally rapid bacterial death [15].
Bacterial cell membrane destruction has been reported

from a long time ago, which had involved even other
chemical compounds such as local anesthetics [21] or
disinfectants [22]. Destruction of external membrane,
cytoplasmic membrane, and energy metabolism of cells
can cause the loss of permeability, leakage of intracellu-
lar constituents and even the coagulation of cytoplasm.

Mechanisms of resistance to antibacterial agents
Efflux pump
An antibacterial agent can be effective upon reaching
the specific site of action and accumulate at specific con-
centrations. Efflux pumps (EPs) act as an export or ef-
flux system that can cause resistance to the wide ranges
of antibacterial agents. Throughout this mechanism, the
antibacterial agent is pumped out faster than the time it
requires to be diffused in bacterial cell and consequently,
the intrabacterial concentration becomes much less than
the effective value. For example, the protein-synthesis
systems such as ribosome are located in the cytoplasm.
So that, inhibitors of protein synthesis are forced to pass
through the cell membranes and then accumulate up to
a sufficient concentration to induce the blockade of pro-
tein synthesis. By reducing the intrabacterial concentra-
tion of inhibitors, which are mediated by EPs, the
procedures of bacterial protein synthesis can be per-
formed without any interruptions [23, 24].
EPs are capable of conveying both lipophilic or amphi-

pathic molecules out of the bacteria. In another aspect, they
have been also able to transport one type of substrate and/
or the range of structurally dissimilar antibacterial agents

(e.g. multiple classes of antibiotics), which had been de-
tected and found in multiple drug-resistant bacteria [25].
Five major families of EPs have been recognized in bac-

teria, which includes major facilitator superfamily (MFS),
multidrug and toxic efflux (MATE), resistance-nodulation-
division (RND), small multidrug resistance (SMR), and
ATP binding cassette (ABC) [26]. The MFS, ABC, SMR,
and MATE families are mainly found in both Gram-
positive and -negative bacteria, while the RND superfamily
is specifically found in Gram-negative bacteria [27]. The
group of RND families always consists of a tripartite com-
plex that spans across both membranes of Gram-negative
bacteria. In regards to Gram-positive bacteria, the MFS
family has been reported as the most abundant EPs while
their well-known members are known to be NorA from
Staphylococcus aureus and PmrA from Streptococcus pneu-
moniae. Figure 2 shows the mentioned major families of
EPs that exist within bacteria. Antibiotic resistance via this
mechanism can be observed in a wide range of pathogenic
Gram-positive and -negative bacteria and fungi such as S.
aureus, Pseudomonas aeruginosa, Acinetobacter bauman-
nii, and Candida albicans [28]. Therefore, employing EP
inhibitors, EPIs, in combination with antibacterial agents
can be contemplated as an effective approach for the pur-
pose of combating microbial infections.

Structural modification of porins
Intracellular access of an antibiotic can be restricted by the
reduction of antibiotics influx. Influx is mainly controlled
by porins which are proteins able to form water-filled open
channels that allowing the passive transportation of mole-
cules across lipid bilayer membranes [29–31]. So, porins
can be considered as potential targets for bactericidal com-
pounds especially for Gram-negative bacteria [30]. Vari-
ation in porin structure results in alteration of membrane
permeability and is a mechanism to escape from antibacter-
ial agents [31]. This circumstance is one of the bacterial
strategies for the antibacterial resistance which is frequently
found in Gram-negative clinical pathogens such as Acineto-
bacter spp. and Pseudomonas spp. [29].

Destroying the antibacterial agents
The second strategy of bacterial resistance is the chem-
ical degradation of antibiotics or antibacterial agents, in
which unlike the previous one, the aim is to change the
chemical formula. The classic degradation is mediated
by attacking the hydrolytic enzyme, β-lactamase, to the
β-lactam ring of penicillins, cephalosporins and carba-
penems [32, 33]. In accordance with the observations,
each enzyme molecule is able to hydrolyse 103 antibiotic
molecules per second; therefore, it can be stated that by
the secretion of 105 enzymes via resistant bacteria, 100
million molecules of the designated antibiotic are
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destroyed in every second and result in the complete in-
effectiveness of the antibiotic [16].

Modification of antibiotics
Other classes of antibiotics, such as aminoglycosides, rep-
resent another mechanism of resistance with respect to
the previous ones. These antibacterial agents are deacti-
vated through the modification of functional groups at
three sites by utilizing three kinds of modifying enzymatic.
These modified products have displayed considerably
lower affinity for RNA and have caused the blockage of
protein synthesis since they are not capable of binding to
ribosomes [34].

Altered target
Drug-binding site alteration can be counted as another re-
sistance mechanism, in which the targeted site of antibac-
terial agent would be constructed in a form that the
antibacterial agent is not able to react with it and thus, re-
sult in a dramatic reduction in the antibacterial activity of
the agent. This type of resistance can be labeled as “Repro-
gramme the target structure” that is found in a wide range
of resistant bacteria [16, 35]. To be stated as an example,
resistance to erythromycin in resistant bacteria is attributed
to different mechanisms such as the activation of efflux
pump, as well as the alteration of drug action site that is
known as peptidyl transferase. Throughout the methylation
of this enzyme, which takes place at a specific amino acid
residue, the procedures of protein biosynthesis that are me-
diated by antibiotics do not impair but the affinity of antibi-
otics to action site, peptidyl transferase, faces a remarkable
reduction. This mechanism of resistance stands as the main

resistance approach in drug-resistant clinical isolates of S.
aureus [36].
Penicillin resistance can be occurred by expression of

new forms of penicillin-binding proteins (PBPs), which
contain a lower affinity for an antibiotic, via the mutation
of corresponding genes. The acquisition of mecA gene in
S. aureus species can lead to the production of new PBPs
forms with low affinity for all of the β-lactam antibiotics.
This type of mechanism has been widely observed in
methicillin-resistant Staphylococcus aureus (MRSA)
strains [37, 38].
An additional example of this mechanism is vancomycin

resistance in Vancomycin-resistant enterococci (VRE) spe-
cies. In these species, the vanHAX genes code a new path-
way of enzymes which induce structural alterations by
switching from the amide linkage in the D-Ala-D-Ala pep-
tidoglycan structure to the ester linkage in the D-Ala-D-
Lac structure resulting in reducing the drug-binding affinity
up to 1000-fold [39].

Plant-derived chemicals
Although synthetic antimicrobial agents have been already
approved in many countries, yet the usage of natural com-
pounds that are derived from microbial, animals, or plants
attracts the attention of many researchers [40, 41]. These
compounds have exhibited promising results in overcoming
the emergence of antibiotic resistance in bacterial patho-
gens [42]. Among all of the available options, plant-derived
compounds have displayed more potential applications in
combating bacterial infections. Plant-derived chemicals are
a wide group of chemical compounds that have been found

Fig. 2 Schematic representation of the main families of bacterial efflux pumps. The resistance- nodulation-division (RND) family, the small multidrug
resistance (SMR) family, the major facilitator superfamily (MFS), the multidrug and toxic compound extrusion (MATE) family and the adenosine triphosphate
(ATP)-binding cassette (ABC) superfamily
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naturally in plants. The extensive existence of these com-
pounds has demonstrated beneficial advantages in terms
of antioxidant, antibacterial, and antifungal activities. They
can restore the clinical application of older antibiotics by
increasing their potency and as a consequent, avoid the
development of resistance [43]. Some of the plants and/or
plant components which containing antimicrobial activ-
ities and are commercially available to consumers are
listed in Table 1.
Based on their chemical structures, they can be classi-

fied into several major groups that include alkaloids,
sulfur-containing compounds, terpenoids, and polyphe-
nols. The most important phytocompounds from differ-
ent chemical classes have been listed in Table 2.

Alkaloids
Alkaloids are heterocyclic nitrogen compounds that contain
extremely variable chemical structures. The antibacterial
activity of alkaloids have been already proven and many
studies have indicated that these compounds can play a sig-
nificant role throughout the treatment of many infectious
diseases [44]. Most of the alkaloids act through EPI activity,
which stands as a putative mechanism of antibacterial

functionality. The most important alkaloids with potent
antibacterial activities have been illustrated in Fig. 3.
Piperine (1), a piperidine-type alkaloid, isolated from

Piper nigrum and Piper longum, when co-administered
with ciprofloxacin, inhibited growth of a mutant S. aur-
eus and also the MIC values for S. aureus reduced mark-
edly [45]. Co-administration of piperine and gentamicin
was effective in combination MRSA infection [46]. The
application of piperine as the EPI has been studied and
the results showed that this compound affected the
NorA EP activity of S. aureus and MRSA [46, 47].
Berberine (2) is known as an isoquinoline alkaloid and

can be found in roots and stem-bark of Berberis species,
which is also the main active ingredient of Rhizoma coptidis
and Cortex phellodendri and has been widely used in trad-
itional medicine. This compound has exhibited activity
against bacteria, fungi, protozoa, and viruses. DNA intercal-
ation, targeting RNA polymerase, gyrase and topoisomerase
IV, and finally, the inhibition of cell division are the antibac-
terial action mechanism of berberine [48–50]. The results
of another study have indicated that its antibacterial prop-
erties are related to the inhibition of cell division protein
FtsZ [51]. This compound has been also able to inhibit the
cell function of bacteria through various mechanisms such

Table 1 Some of plant products with antimicrobial activity

Common name Scientific name Compound Active against Dosage form

Barberry Berberis vulgaris Berberine Bacteria, protozoa Soft gel 1000 mg

Black pepper Piper nigrum Piperine Fungi, Lactobacillus, Micrococcus,
E. coli, E. faecalis

Burdock Arctium lappa Bacteria, fungi, viruses Capsule 475 mg

Caraway Carum carvi Bacteria, fungi, viruses Capsule 1000 mg

Cascara sagrada Rhamnus purshiana Tannins Bacteria, fungi, viruses Capsule 425, 450 mg

Chamomile Matricaria chamomilla Anthemic acid M. tuberculosis, S. typhimurium, S. aureus

Clove Syzygium aromaticum Eugenol General Capsule 500 mg

Cranberry Vaccinium spp. Fructose Bacteria Capsule 500 mg

Eucalyptus Eucalyptus globulus Tannin Bacteria, viruses Inhaler and tablet

Garlic Allium sativum Allicin, ajoene General Tablet

Goldenseal Hydrastis canadensis Berberine, hydrastine Bacteria, Giardia duodenale,
Trypanosomes

Solution, 500 mg per dosage

Green tea Camellia sinensis Catechin General

Licorice Glycyrrhiza glabra Glabrol S. aureus, M. tuberculosis Capsule 450 mg

Oak Quercus rubra
Allium cepa

Tannins
Quercetin

Capsule 500, 650 mg

Onion Allium cepa Allicin Bacteria, Candida

Oregon grape Mahonia aquifolia Berberine Plasmodium
Trypansomes, general

Capsule 500 mg

Senna St. John’s wort Hypericum perforatum Hypericin, others General Table 450 mg

Thyme Thymus vulgaris Caffeic acid
Thymol
Tannins

Viruses, bacteria, fungi Capsule 450 mg

Turmeric Curcuma longa Curcumin, Turmeric oi Bacteria, protozoa
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as damaging the cell structure, as well as protein and DNA
synthesis inhibitors that result in bacterial death [52]. Up to
the present, berberine has emerged as a strong antibacterial
agent for the purpose of replacing conventional antibiotics
and also to overcome the obstacles of antibiotic resistance.
Ungeremine is another iso-quinoline alkaloid that had been
obtained from the methanol extract of Pancratium illyri-
cum L. bulbs, which has been observed to possess antibac-
terial activities. This compound can cause a remarkable
increase in the DNA cleavage by targeting and inhibiting
the bacterial topoisomerase IA [53, 54].
Quinoline alkaloid, such as dictamnine (3) [55], koku-

sagine (4) and maculine (5) that had been isolated from
the stem bark of Teclea afzeli has exhibited promising
antibacterial activity [56]. Natural or synthetic quinolone
alkaloids can inhibit type II topoisomerase enzymes and
consequently, inhibit the DNA replication as well [57].
Alkyl methyl quinolones can reduce the O2 consumption

in the treated bacteria and accordingly, be considered as
respiratory inhibitors [58].
Reserpine (6) is an indole alkaloid that had been pro-

cured from Rauwolfia serpentina and well known natural
compound with potent EPI activity [59]. A wide range of
bacterial species, including Staphylococcus spp., Strepto-
coccus spp., and Micrococcus spp., has shown an enhanced
antibiotic susceptibility upon their co-administration with
reserpine [60]. In addition, reserpine is capable of remark-
ably enhancing the susceptibility of MDR isolates that be-
long to A. baumannii towards antibiotics. It should be
also noted that the AdeABC EPs have been over-
expressed throughout this clinical isolates [61]. It has been
indicated in another study that the overexpression of EP
has been the main resistance mechanism to fluoroquino-
lones in resistant Stenotrophomonas maltophilia, while
the addition of reserpine had decreased the antibiotic re-
sistance [62]. Taken together, it can be concluded that

Fig. 3 Chemical structures of selected antimicrobial alkaloids
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reserpine is a compound with potent EPI activity in both
Gram-positive and -negative bacteria.
As it has been mentioned previously, FtsZ inhibitors

could be considered as a novel class of antibacterial
agents with the potential of exhibiting broad-spectrum
activity. Some of the naturally occurring alkaloids such
as sanguinarine and berberine are known to be capable
of altering the functionality of FtsZ [63].
Sanguinarine (7) can be obtained through the extrac-

tion of some particular plants such as Chelidonium
majus, Sanguinaria canadensis, and Macleaya cordata.
In a study, the activity of sanguinarine against MRSA
strains has been tested and its mechanism of action has
been also investigated. It was shown that the treatment
of bacteria with this compound can lead to the release
of membrane-bound cell wall autolytic enzymes and re-
sults in the lysis of cell; on the another hand, the trans-
mission electron microscopy of MRSA has shown
alterations throughout the formation of septa. Taken to-
gether, the possible action mechanism of sanguinarine
against MRSA has been suggested to be compromising
the cytoplasmic membrane [64]. In the previous study, it
has been indicated that next to being a strong DNA
intercalator, sanguinarine and berberine are potent repli-
cation and transcription inhibitors [65]. It has been also
suggested that sanguinarine can exhibit antimycobacter-
ial activities against two model species of mycobacteria,
which include Mycobacterium aurum and Mycobacter-
ium smegmatis [66].
Tomatidine (8) is a steroidal alkaloid that is procured

from solanaceous plants including tomato, potato, and
eggplant, which has displayed potent antibacterial activ-
ity against S. aureus alone or in combination with ami-
noglycosides [67]. Additionally, the synergistic effects
between tomatidine and aminoglycosides against drug-
resistant strains of S. aureus have been proven as well
[68]. Tomatidine could be considered as a potential anti-
biotic potentiator for different antibiotics, such as genta-
micin, cefepime and ciprofloxacin, and ampicillin,
against both Gram-positive and -negative bacteria that
include S. aureus, P. aeruginosa, and Enterococcus faeca-
lis infections [69].
Chanoclavine (9) has been categorized as a tricyclic ergot

alkaloid that is isolated from Ipomoea muricata and has
exhibited synergistic effects upon being co-administered
with tetracycline against MDR Escherichia coli. This com-
pound has been discovered to inhibit EP, which seems to
be related to the ATPase-dependent ones [70].
Holarrhena antidysenterica belongs to the Apocyna-

ceae family and has been traditionally employed for the
treatment of different diseases such as dysentery, diar-
rhea, fever, and bacterial infections [71]. H. antidysenter-
ica barks are composed of alkaloids, particularly
steroidal alkaloid conessine (10) that is responsible for

its therapeutic effects [72]. This compound is effective
against both Gram-positive and -negative bacteria and
has displayed potential antibacterial activity. Results of
the available studies have indicated that the antibacterial
activity of conessine is almost similar to that of antibi-
otics that had been used as control. Moreover, the com-
bination of conessine with conventional antibiotics has
exerted synergistic effects [73, 74]. This compound has
been also utilized as the resistance-modifying agents in
regards to the susceptibility of A. baumannii towards
antibiotics. Furthermore, significant synergistic activities
have been observed as a result of the combination of
conessine with antibiotics. Additionally, this substance
has displayed EPI activity against AdeIJK EP, which plays
an important role in effluxing the multiple antibiotics in
A. baumannii [75, 76].
Squalamine (11) is a natural steroid-polyamine com-

pound that had been isolated for the very first time from
the dogfish shark. However, this compound, which is not
mainly found in plants, has shown broad-spectrum anti-
microbial activity by disrupting the microbial membranes
and influencing their permeability. In Gram-negative bac-
teria, squalamine interacts with the negatively charged
phosphate groups in the bacterial outer membrane, which
is the first step of the sequences that lead to the disruption
of membrane. However, in the case of Gram-positive bac-
teria, it can cause the depolarization of the cytoplasmic
membrane, resulting in the leakage of cytoplasmic con-
tents and lead to the rapid death of cells [77].

Organosulfur compounds
There is an extensive number of reports in the literature
on the topic of antibacterial and antifungal activities of
sulfur-containing compounds that are obtained from
plants [78, 79]. Sulfur-containing compounds such as al-
licin, ajoene, dialkenyl, and dialkyl sulphides, S-allyl cyst-
eine and S-ally-mercapto cysteine, and isothiocyanates
have exerted antibacterial activities against both Gram-
positive and -negative bacteria [43, 80]. It has been dis-
covered through the performed investigations that the
plants with high concentrations of polysulphides are
capable of displaying a wide spectrum of antimicrobial
activity [81, 82]. The most important compounds with
potential antibacterial activities are shown in Fig. 4.
Allicin (12), also known as diallyl thiosulfinate, is an orga-

nosulfur compound that is obtained from garlic (Allium
sativum), a species in the family Alliaceae. The antimicro-
bial activities of this compound have been acknowledged
for a long time and its antibacterial activities have been ob-
served against a wide range of bacteria such as Staphylococ-
cus epidermidis, P. aeruginosa, Streptococcus agalactiae,
MRSA, and oral pathogens that can cause periodontitis
[83]. Another study has confirmed the fact that allicin can
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potentiate the antibacterial activities of some antibiotics in-
cluding cefoperazone, tobramycin, and ciprofloxacin,
against P. aeruginosa [84].
The mechanism of allicin antimicrobial activity has

been reported, which had been due to the inhibition of
sulfhydryl-dependent enzymes including alcohol de-
hydrogenase, thioredoxin reductase, and RNA polymer-
ase [85]. These observations have been confirmed by
detecting the reduced inhibitory effects of allicin that
had been caused through the addition of cysteine and
glutathione to the media. These two compounds are able
to react with allicin disulfide bond and result in prevent-
ing the microbial cells damages [86]. Furthermore, allicin
has been detected to partially inhibit the DNA and pro-
tein synthesis as well. The immediate effect of allicin on
RNA has been also proven, which indicates the possibil-
ity of RNA is being a possible target of allicin [87].
Ajoene (13) is another organosulfur compound that has

been found in the extracts of garlic. This compound con-
sists of a mixture of two main stereoisomers that include
E- and Z-ajoene. Ajoene has displayed broad-spectrum
antimicrobial activities against both Gram-positive and
-negative bacteria, fungi, and protozoa; however, it has ex-
hibited more potent antiviral activity when compared with
allicin. In addition, and similar to allicin, the inhibitory ef-
fect of ajoene has been greatly reduced upon the append-
ing of cysteine, which had been due to the existing
interaction between an amino acid and disulfide bonds of
the compound. Up to this point, it can be concluded that

ajoene contains the same antibacterial mechanism of ac-
tion to that of allicin, which had functioned in accordance
with different thiol-dependent enzymatic systems [88].
Isothiocyanates (ITCs) are volatile organosulfur com-

pounds that have been obtained through the reaction be-
tween plant glucosinolates and myrosinase enzyme.
Subsequent to tissue disruption, the enzyme hydrolyzes
into active compounds such as nitriles, thiocyanates, and
ITCs. These compounds have been exclusively discovered
throughout the order of Capparales and exist abundantly
in the plants of Brassicaceae family such as cauliflower,
cabbage, mustard, and broccoli. Among all of them, ITCs
have displayed more potent inhibitory effects on a variety
of pathogenic bacteria, which has labeled them as promis-
ing antibacterial candidates.
The antimicrobial activity of ITCs, which are extracted

from horseradish (Armoracia rusticana) root, have been
evaluated against oral pathogens and the obtained re-
sults have indicated that these compounds are capable
of exhibiting the strongest antimicrobial activities [89].
ITCs have been observed to be potently bactericidal
against Helicobacter pylori, which acts by inhibiting the
urease and reducing the inflammatory component of
Helicobacter infections [90].
Although the antimicrobial mechanisms of ITCs have

not been completely comprehended, yet it has been esti-
mated that its antimicrobial activity might be related to
the reactivity of ITCs with proteins, which can disturb
the in vivo biochemical processes. The carbon atom of

Fig. 4 Chemical structures of selected antimicrobial organosulfur compounds
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ITC group (−N=C=S) is highly electrophilic and reacts
easily with amines, thiols, and hydroxyls; consequently,
they can readily attack thiols and the amines of amino
acid residues that exist within proteins, yet they mainly
attack the sulfhydryl groups [91]. Cysteine plays a crucial
role in protein structure, regulatory function and also
protein stabilization with different mechanisms. ITCs
are known to inhibit ATP binding sites of P-ATPase in
bacteria (E. coli), which is performed by attacking the
cysteine residue [92].
Sulforaphane (14) is a compound that exists within the

ITCs and can be found in various plants such as Diplo-
taxis harra. It is derived from 4-methyl sulfinyl butyl
glucosinolate and has displayed potent anticarcinogenic
and antibacterial activities especially against H. pylori,
which is known as a potential causal agent of stomach
cancer. This substance has been also effective against S.
aureus and Listeria monocytogenes; therefore, sulforaph-
ane could be considered as a good candidate for func-
tioning as a novel natural antibacterial agent [93].
Allyl ITCs (15) AITCs, is an organosulfur compound

with the formula of C=C-C-N=C=S, which has been de-
tected to show potent antibacterial activities. It is often
found in the plant of Brassicaceae family such as Armor-
acia rusticana and Eutrema japonicum [94]. Throughout
the study, the antibacterial properties of AITC against E.
coli and S. aureus have been assessed, which had re-
sulted in proving its bacteriostatic and bactericidal activ-
ities [94]. Next to being effective in reducing the MIC
values of erythromycin against S. pyogenes [95], AITCs
has also displayed synergistic effects with streptomycin
against E. coli and P. aeruginosa [96]. It has been indi-
cated in another research that AITC had exhibited low
inhibitory effects against three Gram-positive bacteria
[55]. Various mechanisms have been reported for the
antimicrobial activities of AITC. Upon being utilized as
a vapor, this compound can damage the cell wall integ-
rity and lead to the leakage of cellular metabolites.
Nevertheless, the treatment has provoked internal struc-
ture changes, which had been observed through the
usage of electron microscopy [55, 97, 98]. Delaquis and
Mazza suggest that AITC might cause inactivation of es-
sential intracellular enzymes by oxidative cleavage of di-
sulfide bonds [99]. Lin and co-workers have reported the
observed induced damages on the bacteria cell after be-
ing exposed to AITC, which had resulted in the creation
of pores on the cell membranes and caused the leakage
of intracellular substances [55].
Benzyl ITCs (16) (BITC), is an isothiocyanate that can

be found in Alliaria petiolate [100]. This substance has
been evaluated against 15 isolates of MRSA and has been
perceived to be bactericidal towards 11 of them. Based on
this observation, BITC can be effective in suppressing the
MRSA strains [101]. The potent antibacterial activity of

this compound is apparently dependent on chemical
structure. BITC has both lipophilic and electrophilic prop-
erties and, it can penetrate through the outer bacterial
membrane and disturb the ability of bacterium for main-
taining the membrane integrity, which is similar to what
has been found in regards to cationic peptides [102].
Phenethyl isothiocyanate (17) (PEITC), is another type

of ITCs that can be found within brassica vegetables such
as Brassica campestris and Brassica rapa [103]. This com-
pound has been used to evaluate the in vitro antibacterial
activity against bacteria that had been isolated from the
human intestinal tract. Although PEITC has exhibited po-
tential antimicrobial activities against Gram-positive bac-
teria, however, it has demonstrated low inhibitory activity
against the Gram-negative ones [104]. The antifungal ac-
tivities of PEITC against Alternaria brassicicola has been
also studied and promising results have been observed
[105]. The putative anti-fungal properties of ITCs might
be related to different factors including the decreased rate
of oxygen consumption, intracellular accumulation of re-
active oxygen species (ROS), and finally the depolarization
of mitochondrial membrane [106].
Berteroin (18) which exists in broccoli (Brassica olera-

cea L.), has displayed the lowest MICs values against
both extra- and intracellular bacteria and therefore, can
be considered as an active compound with high bacteri-
cidal activity. In addition, this compound has been de-
tected to be effective against H. pylori [107, 108].

Phenolic compounds
Phenolic compounds include a wide range of bioactive
natural compounds that are extensively utilized for med-
ical purposes. These compounds, as bioactive molecules,
play an important role in enhancing antibiotic activity
against resistant pathogens through various mechanisms
[109–111]. Figure 5 demonstrates the most important
phenolic compounds with potential antibacterial activities.
Reducing the EP activity and acting as EPIs strand as

some of the most significant mechanisms. These types of
compounds have shown promising EPI activity against
pathogenic bacteria. Table 1 contains the list of the most
important EPIs that have been isolated from plant source.
Resveratrol (19) is known as a natural phenolic com-

pound that has exhibited EPI activity against different
bacteria, which is capable of inhibiting the activity of
CmeABC EPs of Campylobacter jejuni or EPs of M.
smegmatis [112, 113]. Ferreira et al. studied the EPI ac-
tivity of this compound against Arcobacter butzleri LMG
10828 and Arcobacter cryaerophilus LMG 10829. The
results indicated an increase in the accumulation of eth-
idium bromide in the presence of resveratrol [114].
Baicalein is a flavone (20) isolated from the roots of

Thymus vulgaris, Scutellaria baicalensis, and Scutellaria
lateriflora. In previous studies, the antibacterial activity
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of Scutellaria baicalensis extract has been reported
[115]. The antimicrobial activities of different extracts of
S. litwinowii have been screened against the standard
strains of S. aureus, Bacillus cereus, P. aeruginosa, E.
coli, and C. albicans. The minimum inhibitory and bac-
tericidal concentrations have been determined through
the means of broth microdilution method and tetrazo-
lium chloride salt. The results of this investigation indi-
cated that extracts obtained from the aerial parts of S.
litwinowii possessed antioxidant and antimicrobial prop-
erties [116]. Baicalein could also remarkably restore the
effectiveness of β-lactam antibiotics, tetracycline, and
ciprofloxacin against MRSA via inhibition of the NorA
EP [117]. Furthermore, synergistic effects have been ob-
served as a result of the combination of baicalein with
tetracycline against E. coli by the inhibition of EP [118].
The inhibitory activity of biochanin A (21), an isoflavone,

on efflux system of MRSA has been previously studied, and
the results had indicated that this substance could inhibit
MRSA EPs by reducing the expression of NorA protein
[119]. The Inhibitory effect of biochanin A on intracellular
bacteria of Chlamydia spp. has been investigated and the
outcomes had suggested that this compound is a potent in-
hibitor of Chlamydia spp. [120]. Moreover, the potent EPI

activity of biochanin A has been demonstrated against
Mycobacterium strains [113, 121]. Several other flavonoids
also showed inhibitory activity against NorA EP.
Chrysosplenol-D (22) and chrysoplenetin (23), which are
two methoxylated flavones from Artemisia annua have
inhibited NorA EP in the presence of subinhibitory concen-
trations of berberine as a substrate of NorA EP [122]. Iso-
flavonoids and flavonolignans are two other classes of
phenolic compounds that could inhibit NorA and increase
the potency of norfloxacin and berberine [123]. Silybin, a
flavonolignan from the famous medicinal plant Silybum
marianum and isoflavonoids biochanin A, genistein, and
orobol from Lupinus argenteus potentiated S. aureus
against many substrates of NorA EP [123, 124].
The topic of hybridization of antibiotics with flavonoid

has attracted the attention of many researches since it can
reduce the EPs activity [125]. It has been indicated that the
antibiotic accumulation and activity of hybrid molecules
have been remarkably enhanced, which confirms the de-
sired dual mode of action.
Kaempferol (24) is an active flavonoid that has been con-

sidered as a potential candidate against different pathogenic
microbes since its effectiveness against fluconazole-resistant
C. albicans and also MRSA has been proven [126, 127].

Fig. 5 Chemical structures of selected antimicrobial phenolic compounds
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The EPI activity of kaempferol against MRSA was similar
to that of verapamil, as a control, and mainly due to the ef-
fect on the NorA pump. Kaempferol rhamnoside a natural
glycoside derivative of kaempferol from Persea lingue could
increase antimicrobial activity of ciprofloxacin in a NorA
overexpressed S. aureus strain up to 8-folds [128].
Brown et al. developed a new LC-Mass-based method for

identification of EP inhibitors and studied pure flavonoids
as inhibitors through the means of this novel approach.
Interestingly, they have discovered that although the
fluorescence-based technique has been unable to correctly
exhibit the inhibitory activity, yet in the course of the LC-
Mass-based method, rhamentin and kaempferol have dis-
played fine inhibitions with the IC50 values of 66 and
60 μM, respectively [129]. In addition, quercetin (25) has
displayed a moderate inhibition of EP while in previous
studies, there have not been any signs of inhibitory activity.
Apparently, it can be stated that flavonoids possess quench-
ing effects when positioned in the fluorescence-based
methods, which can affect the results that are achieved
throughout this type of studies [129].
Chalcones are other groups of phenolic compounds

that can inhibit EP and increase the activity of antibi-
otics. 4′,6′-Dihydroxy-3′,5′-dimethyl-2′-methoxychal-
cone (26) isolated from Dalea versicolor inhibited NorA
EP and reduced MIC of erythromycin from 0.4 to
0.1 μg/mL [130]. A more comprehensive work on chal-
cones has been performed by Holler et al. Screening of a li-
brary of 117 natural and synthetic chalcones revealed that
two synthetic chalcones namely 4-phenoxy-4′-dimethyla-
minoethoxychalcone and 4-dimethylamino-4′-dimethyla-
minoethoxychalcone were equipotent to reserpine, an
alkaloid with potent NorA EP inhibitory activity [131]. In
accordance with this study, chalcones could be considered
as candidates for more clinically relevant researches in the
future to overcome this type of antibiotic resistance.
The catechin gallates such as epigallocatechin gallate

(EGCG) (27) are another group of phenolic compounds
that provide health benefits and also exhibited potent
antimicrobial activity against resistant pathogens such as
MRSA. These compounds were found to weakly inhibit
the NorA EP [132].
Antimicrobial activity of natural phenolic compounds is

not limited to their ability to inhibit efflux pump. Several
phenolic compounds with diverse mechanisms of action
have been identified to date [109]. The inhibition of DNA
gyrase can be stated as an example of these mechanisms
that has led to the introduction of clinically approved ami-
nocoumarin antibiotic novobiocin [133]; nevertheless,
since these types of compounds have not been produced
by plants, they had been considered out of the scope of
this review.
Green tea polyphenols (tannins) [134], chebulinic acid

[135] and anthraquinones [136] are natural phenolic

compounds that showed inhibitory activity against DNA
gyrase. EGCG from green tea can inhibit the B subunit
of DNA gyrase at its ATP binding site [134]. Owing to
the multiple modes of EGCG action, which include the
inhibition of EP, as well as the inhibition of chromo-
somal penicillinase and DNA gyrase, this natural poly-
phenol stands as one of the special interests for future
researches. Chebulinic acid (28) is another tannin that
had been initially isolated from Terminalia chebula. The
virtual screening of several natural compounds revealed
that chebulinic acid can inhibit quinolone resistant mu-
tants of M. tuberculosis DNA gyrase effectively [135].
However, the findings were limited to in silico studies
and no in vitro experimental study was done. Future in
vitro studies should be done to unravel the significance
of chebulinic acid as a DNA gyrase inhibitor and antitu-
berculosis agent.
Haloemodins are semisynthetic natural anthraquinone

derivatives that can strongly inhibit DNA gyrase in
MRSA and vancomycin-resistant Enterococcus faecium.
Several halogenated analogous of natural product emo-
din have been synthesized and showed potent activity
against bacterial DNA gyrase, while weak activity was
observed against human topoisomerase I [136].
The novel phenolic compound isolated from Cedrus deo-

dara, 3-p-trans-coumaroyl-2-hydroxyquinic acid (CHQA)
(29), has shown potent antibacterial activity against eleven
food-borne pathogens. The elucidated mechanism of action
of CHQA against S. aureus (MIC values ranging from 2.5–
10mg/mL) is causing damage to the cytoplasmic mem-
brane and inducing the leakage of intracellular constituents
that is due to the occurrence of significant membrane hy-
perpolarization with a loss of membrane integrity, which
had been determined through the usage of membrane po-
tential measurements and flow cytometric analysis. Authors
believed that CHQA may be a candidate to serve as a nat-
ural antimicrobial agent for the food industry [137]. It
seems that generally hydroxycinnamic acids (p-coumaric,
caffeic and ferulic acids) natural products are capable of
interfering with membrane integrity, while p-coumaric has
the most interfering activity in this group owing to its more
lipophilic nature [138]. In a study on the effects of phenolic
compounds on wine lactic acid bacteria (Oenococcus oeni
and Lactobacillus hilgardii) coumaric acid, a hydroxycin-
namic acid compound showed the most activity [138].
A comprehensive structure-activity relationship (SAR)

study on membrane interaction effects of flavonoids has
proved that the antibacterial activity of flavonoids has a
positive correlation with their ability to rigidify the E.
coli membrane, which suggests that one possible mech-
anism of action of flavonoids is reducing membrane flu-
idity. Kaempferol with the higher CLogP and the
positive charge on C3 displayed the most potent activity
against E. coli [139].
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Phenolic compounds can also interact with some crucial
enzymes which are responsible for the production of pre-
cursors of bacterial cell membrane including beta-
Ketoacyl acyl carrier protein synthase (KAS) II and III or
enzymes that were involved in elongation cycle of fatty
acid biosynthesis including FabG, FabI, and FabZ. An in
silico screening of flavonoids that had been performed for
assessing their binding affinity to E. faecalis KAS III en-
zyme has indicated that flavanones (naringenin (30), erio-
dictyol (31), and taxifolin (32)) are more potent inhibitors,
while the results of the in vitro studies have displayed a
moderate antibacterial activity against E. faecalis and
vancomycin resistance strain [140]. However, another
study on E. coli has revealed that 3,6-dihydroxyflavone
(33) (a flavonol) can also bind potently to KAS III and
KAS I and its MIC was 512 μg/mL, indicating that many
classes of flavonoids can bind to KAS enzymes [109].
EGCG from green tea could inactivate beta-ketoacyl-

[acyl carrier protein] reductase (FabG) in E. coli via cova-
lent binding to the protein that leads to aggregation of
FabG [141]. Sakuranetin (34) a methoxy derivative of the
flavanone naringenin from Polymnia fruticose competi-
tively inhibited FabZ in H. pylori and the MIC value of
sakuranetin against H. pylori was 87.3 μM [142]. Although
quercetin and apigenin (35) have been also capable of
inhibiting the FabZ, yet their inhibitory activity has been
lower than that of sakuranetin, whereas quercetin has dis-
played lower MIC values.
Curcumin (36) is a well-known compound that is ob-

tained from Tumeric and the recent studies have revealed
that it can display bactericidal activity by damaging the cell
membranes of S. aureus and E. coli. The authors have re-
lated the observed activity to the amphipathic and lipo-
philic chemical structure of curcumin that can penetrate
to membrane bilayer and enhance its permeability [143].
d-Alanine:d-alanine ligase is a critical enzyme in the as-
sembly of peptidoglycan precursors of the cell wall. Quer-
cetin and apigenin, two abundant flavonoids, are the
phenolic compounds that could inhibit d-alanine:d-alanine
ligase in H. pylori and E. coli. Quercetin was more active
(48.5 and 19.9 μM, respectively) than apigenin (132.7 and
163 μM, respectively) and both were reverse inhibitors and
competitive with ATP [144]. However, the MIC values for
both strains were high which reflects the low inhibitory ac-
tivity of these compounds.
Some other phenolic compounds can directly interact

with peptidoglycan and inhibit cell wall biosynthesis.
Sophoraflavanone B (37) is a prenylated flavonoid that
showed MIC of 15.6–31.25 μg/mL against MRSA while de-
tailed studies revealed its direct interaction with peptidogly-
can as the possible mechanism of action [145].
The inhibition of some enzymes including dihydrofolate

reductase, urease, and sortase were likewise proposed as a
mechanism of action of some of the phenolic compounds

[146–148]. Inhibition of dihydrofolate reductase was identi-
fied as one of the diverse mechanisms of action of EGCG
against 18 clinical isolates of nosocomial pathogen Stenotro-
phomonas maltophilia. This mechanism was similar to the
well-known blocker of dihydrofolate reductase and as the
MIC values were very low in some isolates (4 μg/mL) the
authors suggest that by more clinical studies, trimethoprim
can be replaced with EGCG in patients that cannot tolerate
the side effects of trimethoprim [148].
A study on the inhibitory activity of Curcuma longa

against sortase A from S. aureus has revealed that curcu-
min is a potent inhibitor of this enzyme with the IC50 of
13.8 μg/mL, while an IC50 of 40.6 μg/mL has been de-
tected in the case of p-hydroxy mecuri benzoic acid as the
positive control. Although demethoxycurcumin and bisde-
methoxycurcumin have been also enabled to inhibit sor-
tase A, yet their activity has been lower than curcumin
[149]. In a similar fashion, a bioassay-guided study on the
inhibitory activity of compounds from barks of Rhus ver-
niciflua against S. aureus sortase identified morin (38) (a
flavonol) as a potent inhibitor of sortase A and B with
IC50 values of 37.39 and 8.54 μM, respectively. Although
the flavonols were unable to inhibit the growth of bacteria,
more studies indicated that flavonols have fibrinogen cell-
clumping activity [150].
Some specific phenolic compounds are also considered

to be potent inhibitors of urease as a major virulence factor
of H. pylori. A SAR survey that had been performed by
Xiao et al. have revealed that the 4-deoxy analogues of fla-
vonoids are potent inhibitors of urease and 4′,7,8-trihy-
droxyl-2-isoflavene (39) has inhibited the enzyme with the
IC50 of 0.85 μM which is 20-fold stronger than acetohy-
droxamic acid as a well-known urease inhibitor. Consider-
ing the side effects that had been observed from synthetic
inhibitors of urease throughout the in vivo studies, appar-
ently 4′,7,8-trihydroxyl-2-isoflavene can be a promising
candidate for future in vivo investigations [147].
Phenolic compounds showed diverse mechanisms of ac-

tion against different bacterial strains from synergistic ac-
tivity via inhibition of EPs, interacting with the cell
membrane and inhibition of cell wall biosynthesis to inhib-
ition of certain critical enzymes including urease, sortase A
and dihydrofolate reductase. The observed activities were
remarkable in some studies making phenolic compounds a
good candidate for future in vivo studies and even clinical
trials. EGCG and curcumin are good examples of such
compounds that can act with various mechanisms of ac-
tion thus can unable bacteria to simply become resistant to
the treatment.

Coumarins
Coumarins are produced naturally by many plants and
microorganisms [151]. Up to now, several bioactivities of
coumarins have been reported including vasodilator,
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estrogenic, anticoagulant, analgesic, anti-inflammation,
sedative and hypnotic, hypothermic, anti-helminthic, anti-
cancer, antioxidant and dermal photosensitizing activity
[152–154]. Figure 6 illustrates the well-known coumarins
that have displayed high potential antibacterial activities.
Many reports have shown the antimicrobial activity of

both natural and synthetic derivatives of coumarins
[151, 155, 156]. For instance, Basile et al. reported vari-
ous coumarins and pyranocoumarins extracted from the
roots of Ferulago campestris, and the antibacterial and
antioxidant activities of the most plentiful ones (agasyl-
lin, grandivittin and aegelinol benzoate) against both
Gram-negative and Gram-positive bacteria. Particularly,
aegelinol (40) and agasyllin (41) were more active against
ATCC strains of Salmonella enterica serovar Typhi, En-
terobacter aerogenes, Enterobacter cloacae, and S. aureus
(MIC = 16 μg/mL for aegelinol and 32 μg/mL for agasyl-
lin). Both compounds also showed antibacterial activity
against Helicobacter pylori in a dose-dependent manner
between 5 and 25 μg/mL [157].
Tan et al. found one new and nine known prenylated

coumarins from the root extract of Prangos hulusii and
assessed the antimicrobial activity of the dichloromethane
extract against both standard and clinical isolates. Although

the new coumarin, 4′-senecioiloxyosthol (42) was the most
active compound against Bacillus subtilis (MIC = 5 μg/mL),
osthole (43), one of the previous extracted coumarins, pre-
sented acceptable antibacterial effect against more patho-
gens including B. subtilis, S. aureus, Klebsiella pneumonia
and methicillin-sensitive Staphylococcus aureus (MSSA) (all
MICs = 125 μg/mL) [158].
Screening the antimicrobial effect of six coumarins,

which are common constituents of seven plants grown
in Finland displayed that while the antibacterial and an-
tifungal activities of these natural coumarins were gener-
ally weak, they were active against the fungal pathogen
Fusarium culmorum [159]. In 2006, El-Seedi found a
new aryl coumarin glucoside, asphodelin A 4′-O-β-D-
glucoside (44) as well as its aglycon, asphodelin A (45)
from Asphodelus microcarpus. In vitro antimicrobial
evaluation was done against five microorganisms includ-
ing S. aureus, E. coli, P. aeruginosa, C. albicans, and Bo-
trytis cinerea. In general, asphodelin A exhibited more
potent activity with MIC value ranging from 4 to
128 μg/mL [160].
Maxwell investigated the SAR of three compounds

with coumarin structure, clorobiocin (46), novobiocin
(47) and coumermycin A1 (48) which all have derived

Fig. 6 Chemical structures of selected antimicrobial coumarins
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from different Streptomyces species and displayed anti-
biotic activity. He concluded that there is an individual
noviosyl sugar moiety in the chemical structure of each
compound that is essential for biological activity, besides
the coumarin portion. He also introduced coumarins as
potent inhibitors of DNA topoisomerase type II, known
as DNA gyrase [161].
Study on the SAR of coumarins revealed that both lipo-

philic characteristics, as well as a planar structure, are ne-
cessary for high antibacterial effects [155]. Indeed, since it
seems that the antimicrobial activity of coumarins is due
to the passive diffusion mechanism, these characteristics
can facilitate cellular penetration especially for Gram-
positive bacteria Moreover, Sardari et al. suggested that a
free 6-OH and 7-OH in the coumarin nucleus play an im-
portant role for antifungal and antibacterial activity, re-
spectively [162]. In another hand, systemic analysis of the
SAR has indicated that coumarins with a methoxy func-
tion at C-7, besides a hydroxyl moiety at either C-6 or C-8
invariably have an antibacterial effect against a broad
spectrum of bacteria. The existence of an aromatic
dimethoxy arrangement, in turn, produces promising
compounds against microorganisms with special growth
factors requirements including Haemophilus influenza,
beta-hemolytic Streptococcus and Streptococcus pneumo-
nia [155]. Moreover, recent studies have suggested that
coumarins are able to suppress the quorum-sensing net-
work of bacterial pathogens and affect their ability in the
development of biofilm formation and virulence factors
production [153, 163–167].
Some coumarin derivatives were also able to inhibit

EP in MSRA strain. Bergamottin epoxide (49) a furano-
coumarin from Citrus paradisi (grapefruit) resulted in
the 20-fold reduction in the MIC value of norfloxacin
against MRSA, but not against MSSA, via inhibition of
EP [168]. In another study on EP inhibition of seven
coumarins from Mesua ferrea, two compounds showed
inhibition against the EP system in MRSA and clinical
isolates of S. aureus by the 8-fold reduction in the MIC
of norfloxacin [169].
Coumarins are capable of binding to isoprene units in

plant cells to form more complex structures. 6-Geranyl
coumarin (50) and gallbanic acid (51) are two terpenoid
coumarins that inhibited EP in S. aureus, significantly
[170, 171]. Up to 8-fold reduction in the MIC of cipro-
floxacin was observed for galbanic acid, and its mode of
action and potency were comparable to verapamil as a
well-known inhibitor of EP.

Terpenes
Terpenes or isoprenoids are considered as the most di-
verse family of natural products. They are widely out-
spread in nature, present in nearly all forms of life and
perform numerous functions ranging from participation

in the primary structure of cells (cholesterol and steroids
in cell membranes) to contribution to the cell functions
(retinal in vision, carotenoids in photosynthesis, qui-
nones in electron transport) [172, 173]. They also exist
abundantly in flowers, fruits, and vegetables. Especially,
they can be found in high concentration in reproductive
structures and foliage of plants, throughout and immedi-
ately following flowering. Terpenes are the major ingre-
dients of herbal resins and responsible for the common
fragrance of various plants [173]. It has been shown that
several terpenes and their derivatives act as an impera-
tive defense against herbivores and pathogens [173–
177]. The different plant terpenes with high potential
antibacterial activities are presented in Fig. 7.
Commonly, Gram-positive bacteria are more suscep-

tible to terpenes than Gram-negative ones. The anti-
microbial mechanism of terpenes is closely associated
with their lipophilic features. Monoterpenes preferen-
tially impact on the structures of the membrane through
increasing its fluidity and permeability, altering the top-
ology of its proteins and making disturbances across the
respiration chain [173].
Togashi et al. investigated the inhibitory effects of vari-

ous terpene alcohols with different aliphatic carbon chains
including linalool (C6), geraniol (C8), nerolidol (C10),
plaunotol (C11), farnesol (C12), and geranylgeraniol and
phytol (C16) (numbering is from the first carbon bonded
to the hydroxyl group) on the growth of S. aureus. Among
all of the tested compounds, only farnesol (52) and neroli-
dol (53) displayed strong antibacterial effect with MBC as
20 and 40 μg/mL, respectively. They also examined the
interaction of these terpene alcohols with bacterial cell
membrane by evaluating the leakage of intracellular K+

ion. They proposed that leakage of K+ from the cells re-
flects the antibacterial potency of the membrane disturb-
ing compounds. The initial rate of leakage was considered
as the damage to the cell membranes while the total
amount of leaked K+ was evaluated as the antibacterial ac-
tivity. Again, farnesol and nerolidol were the most effect-
ive compounds. Finally, they concluded that the length of
the hydrocarbon chain connected to the hydroxyl group,
plays an important role in antibacterial and cell membrane
disrupting activity and it should be between C10 and C12
for appropriate effect against S. aureus [174]. Another ter-
pene compound with antibacterial activity against S. aur-
eus is dehydroabietic acid (54) which is a kind of resin
acid [178]. It was found that dehydroabietic acid deriva-
tives have antibacterial effects, too [179–181].
One of the most important terpenes that have the po-

tential to be used in anti-infective therapy is carvone
[173]. It has been shown while (4R)-(−)-carvone (55)
was active against Campylobacter jejuni, E. faecium and
E. coli, (4S)-(+)-carvone (56) was effective towards
L.monocytogenes [182]. Both optical isomers were active
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towards various pathogenic fungi. In general, carvone in-
hibits the transformation of cellular yeast form of C.
albicans to the filamentous form, that is responsible for
the fungus pathogenicity [173].
The other antifungal compound is thymol (57) which

has shown potent activity against clinical isolates of C.
albicans, Candida glabrata, and Candida krusei, alone
and in the combination of fluconazole. The MIC values of
thymol were 49.37, 51.25 and 70 μg/ml for C. albicans, C.
glabrata and C. krusei strains, respectively. Thymol also
exhibited synergistic activity toward all tested species of
Candida in combination with fluconazole [183]. Due to
their potent and wide antifungal activity, Abbaszadeh et
al. also suggested thymol and carvacrol (58) in addition to
eugenol (59) and menthol (60) as good alternatives of syn-
thetic fungicides in food industries. Indeed, they reported
that all of these compounds were effective in different ex-
tents against various food-decaying fungi including Asper-
gillus niger, Aspergillus fumigatus, Aspergillus flavus,
Aspergillus ochraceus, Alternaria alternata, Botrytis
cinerea, Cladosporium spp., Penicillium citrinum, Penicil-
lium chrysogenum, Fusarium oxysporum, and Rhizopus
oryzae [184]. These observations were also confirmed by
other research groups [185]. Althunibat et al. considered
thymol as well as carvacrol as the major components of
Thymus capitatus. The antibacterial effects of both com-
pounds were evaluated against E. coli, Enterobacter aero-
genes, S. aureus, and P. aeruginosa. In conclusion, the

MIC values were 0.005–0.008mg/mL for thymol and
0.007–0.008mg/mL for carvacrol [186]. During biofilm
formation of Salmonella spp. (Salmonella typhimurium,
Salmonella enteritidis and Salmonella saintpaul), both
substances reduced bacterial counts on polypropylene sur-
face, about 1–2 log at subinhibitory concentrations; but
for established biofilms about 1–5 log were observed at
MIC or 2× MIC [187]. Although Chauhan et al. intro-
duced “disruption of membrane integrity” as the main
mechanism of thymol against S. typhimurium [188],
Miladi et al hypothesize that the two major monoterpenic
phenol, thymol, and carvacrol, acts through the inhibition
of EP in a concentration-dependent manner. They found
that these natural compounds enhanced the accumulation
of ethidium bromide (EtBr) in foodborne pathogens
through the inhibition of EtBr cell efflux [189].
Broniatowski et al. studied the antimicrobial mechan-

ism of two pentacyclic triterpenes, ursolic acid (61) and
α-amyrin (62) as the natural products with a broad
spectrum of antibacterial activity. They used the Lang-
muir monolayer technique to model the interaction of
the two compounds with the inner membrane of E. coli.
Both pentacyclic triterpenes displayed disorganizing ef-
fects on the applied model of E. coli membrane [190].
The other famous terpenoids are eugenol and cinna-

maldehyde (63) that are present in essential oils of sev-
eral plants and demonstrated to be active against a wide
spectrum of pathogens. After a comprehensive study on

Fig. 7 Chemical structures of selected antimicrobial terpenes
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30 strains of H. pylori as one of the major human patho-
gens involved in gastric and duodenal ulcers as well as
gastric malignancy, Ali et al. revealed that the two bio-
active compounds could prevent H. pylori growth with-
out developing any resistance towards these compounds
[191]. Eugenol also has exhibited notable bioactivity
against biofilms of MRSA and MSSA clinical strains. Ac-
cording to the study of Yadav et al. eugenol inhibits bio-
film construction, interrupts cell-to-cell communication,
eradicates the pre-established biofilms, and kills the bac-
teria in biofilms, equally for MRSA and MSSA. These ef-
fects of eugenol were attributed to the impairment of
the bacterial cell membrane and the leakage of the cell
contents. Yadav et al. also reported that eugenol reduced
the expression of genes related to the biofilm and en-
terotoxin production at a sub-inhibitory concentration
[192]. In the study of Rathinam et al. eugenol exhibited
comparable effects on biofilm formation and virulence
factor synthesis of P. aeruginosa [193]. A study on the
cinnamaldehyde mechanism of action against E. coli and
S. aureus using scanning electron microscopy, showed
that in the presence of cinnamaldehyde, the structure of
bacterial membrane was damaged, membrane potential
decreased and metabolic activity was affected which fi-
nally resulted in the bacterial growth inhibition [194].
Several terpenoid derivatives also exhibited antimyco-

bacterial activity, as one of the most important patho-
gens. A list of such natural products with the emphasize
on M. tuberculosis was reported by Copp, including san-
daracopimaric acid, (+)-Totarol, Agelasine F, elisaptero-
sin B, costunolide, parthenolide, 1,10-epoxycostunolide,
santamarine, reynosin, alantolactone, puupehenone, ela-
tol, deschloroelatol, debromolaurinterol, allolaurinterol,
and aureol. This antimycobacterial activity is related to
the usually moderate to the high lipophilic structure of
terpene derivatives which facilitate their penetration into
the mycobacterial cell wall [195].

Conclusions and perspectives
There are lots of evidence suggesting that medicinal
plants are very effective in the treatment of infectious
diseases. The plants hold great promise as a source of
novel antimicrobial agents. They are readily available,
cheap and also, almost; do not have any side effects.
Plant derivative compounds including phytochemicals
have even been employed to treat various infectious dis-
ease and have shown interesting antimicrobial activity
against several human pathogens. Some of these com-
pounds show both intrinsic antibacterial activity and
antibiotic resistance modifying activities. Some of them
while not effective by themselves as antibiotics, when
combined with antibiotics, they can overcome antibiotic
resistance in bacteria. Co-administration of them with

antibiotics leads to reduce the MIC values of antibiotics
and synergistic effects were observed.
Similar to co-administration of antibiotics with a dif-

ferent mechanism of actions such as amoxicillin-
clavulanate and isoniazid-rifampicin-pyrazinamide-eth-
ambutol, the combination of conventional antibiotics
and natural compounds which act on the different target
sites of bacteria leads to superior efficacy and can be
quite successful, especially in suppressing the develop-
ment of resistance. Hence, it is necessary to understand
the exact molecular mechanism of the compound. Fur-
thermore, getting to know antimicrobial plant mecha-
nisms may be useful in developing a novel therapeutic
approach. With this regard, various mechanisms have
been suggested to explain the mode of action and gener-
ally include damaging the bacterial cell membrane, inhi-
biting EPs and also inhibiting DNA and protein
biosynthesis. For instance, a combination of EGCG and
tetracycline, a protein synthesis inhibitor antibiotic, led
to synergistic effects. EGCG inhibited the efflux pump of
bacteria and therefore the intracellular concentration of
tetracycline was increased and consequently, could have
a direct impact on restoring antibiotic efficacy in resist-
ant strains.
In conclusion, in recent years, people have been paying

more attention to herbal-based medicines due to their
properties. However, many studies still need to be con-
ducted to ensure the mechanism of action and also the
safety of antimicrobial phytochemicals.

Challenges and future perspective
The translation of in vitro studies to in vivo experiments
and finally to human clinical trials has been the major
challenge in the development of new phytochemicals. In
the case of natural antimicrobial agent, the problem is
more serious since many factors can affect the efficacy
of the natural product including tissue penetration, max-
imum plasma concentration can be achieved and bio-
availability. As an instance, phenolic natural products
are readily glucuronidated with hepatic enzymes that
dramatically affects their tissue penetration and max-
imum plasma concentration.
The spread of antibiotic-resistant microorganisms has

been a big threat to successful therapy of microbial in-
fections. So far, there is an urgent need to develop new
strategy to combat antibiotic resistance. Phytochemicals
which are characterized by diverse chemical structures
and mechanisms of action are attractive therapeutic
tools for discovering bioactive products in the next
years. However, continued researches should be carried
out for a better understanding of the exact mechanisms
and also pharmacodynamic and pharmacokinetic prop-
erties of the molecules.
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