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Gonococcal resistance can be viewed
productively as part of a syndemic of
antimicrobial resistance: an ecological
analysis of 30 European countries
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Abstract

Background: It is unclear how important bystander selection is in the genesis of antimicrobial resistance (AMR) in
Neisseria gonorrhoeae.

Methods: We assessed bystander selection in a novel way. Mixed-effects linear regression was used to assess if
country-level prevalence of gonococcal AMR in 30 European countries predicts homologous AMR in other bacteria.
The data used was from the European Antimicrobial Resistance Surveillance Network.

Results: The prevalence of gonococcal ciprofloxacin resistance was found to be positively associated with AMR
prevalence in E. coli (coef. 0.52; P = 0.007), Acinetobacter spp. (coef. 0.13; P = 0.044) and Pseudomonas aeruginosa
(coef. 0.36; P = 0.020) but not Klebsiella pneumoniae. Azithromycin resistance in N. gonorrhoeae was positively
associated with macrolide resistance in Streptococcus pneumoniae (coef. 0.01; P = 0.018). No association was found
for cephalosporins.

Conclusions: Gonococcal AMR is linked to that in other bacteria. This finding is likely explained by high
antimicrobial consumption in affected populations and provides additional motivation for strengthening
antimicrobial stewardship programs.

Keywords: Gonorrhoea, Neisseria gonorrhoeae, Fluoroquinolones, Macrolides, Antimicrobial resistance, Stewardship,
Antibiotic consumption, Bystander selection

Background
Neisseria gonorrhoeae has developed antimicrobial resist-
ance (AMR) to every major class of antimicrobials used
to treat it [1, 2]. There are real concerns that it may be
untreatable with available antimicrobials in the not too
distant future [2, 3]. Understanding the determinants of
AMR in N. gonorrhoeae is vital to prevent the future
emergence of AMR. Initially, it was thought that the

major AMR determinant was exposure to antibiotics
used to treat gonorrhoea [4–6]. The appreciation that N.
gonorrhoeae is asymptomatic for much or most of the
time it circulates in a population means that antibiotics
used for other indications needed to be considered (by-
stander selection) [7]. Since gonococcal infections cluster
with other STIs, a widely held formulation of this view
was that bystander selection was predominantly confined
to antibiotics used to treat other STIs (termed the STI
bystander theory) [8]. While authors have speculated
that drugs such as macrolides used to treat chlamydial
and Mycoplasma genitalium genital infections may drive
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AMR in N. gonorrhoeae, little direct evidence to support
this notion has been published [9]. One study has, how-
ever, found that the prevalence of macrolide AMR in
Treponema pallidum, the bacterium responsible for
syphilis, was strongly associated with population-level
consumption of macrolides [10]. Other studies have sug-
gested that antibiotic consumption for all indications
plays a role (community bystander theory; Fig. 1) [7].
Understanding which of these theories is correct has im-
portant implications. If the former is true, then prevent-
ing the further emergence of gonococcal AMR could be
accomplished by interventions such as antimicrobial
stewardship limited to within STI services. If total anti-
biotic consumption played a role, then stewardship ef-
forts to reduce antibiotic consumption in the whole
community would be important [11].
Ecological studies have reached different conclusions

regarding the association between general antimicrobial
consumption and the emergence of AMR in N. gonor-
rhoeae, with some studies finding no association [12]

and others finding an association [11, 13, 14]. Given the
complexity of resistance ecology and the crudeness of
the measurement tools at our disposal, these differences
in findings are not too surprising [15]. For example,
population-level antimicrobial exposure is typically mea-
sured as defined daily doses (DDD) per 1000 persons.
The effect of exposure on AMR, however, depends on a
variety of pharmacokinetic and other variables. Thus, a
population that uses a higher and more effective dosing
schema of antibiotics may have a higher DDD but a
lower probability for inducing AMR to that antibiotic
[15]. Exposure in a remote location may also result in
AMR, which may then spread via travel to populations
without the exposure [16]. This problem is particularly
important for N. gonorrhoeae where travel has been
shown to have played a vital role in the spread of AMR
[16]. The problem is further compounded by horizontal
gene transfer of AMR-conferring DNA from different
bacterial species, where the AMR may persist (and
travel) for years following exposure [17–20]. The

Fig. 1 Conceptual framework for understanding how different forms of bystander selection could result in N. gonorrhoeae antimicrobial resistance
(AMR) to the antibiotic-x (AB-x). The blue-pathway represents STI bystander selection where the use of antibiotic-x to treat STIs selects for AMR to
other STIs that were not the target of the antibiotic. The red-pathway depicts community bystander selection whereby high-levels of
consumption of antibiotic-x would select for resistance to ‘x’ in circulating commensal and pathogenic bacteria. This community bystander
selection could also act on STIs (striped red arrow), one of the hypotheses tested in this paper. The other hypothesis tested is that the prevalence
of AMR to ‘x’ in N. gonorrhoeae will be positively associated with that in Escherichia coli and other pathobionts
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emergence of AMR may also be due to a short, concen-
trated period of exposure in a particular subpopulation
and the AMR irreversible despite reduced antimicrobial
exposure. These features mean that traditional country-
level ecological analyses may miss associations between
antimicrobial exposure and resistance.
These limitations motivated the current study where

we approach the problem via a novel methodology. In
addition to assessing the traditional association between
antimicrobial consumption and gonococcal AMR, we
analyze the association between gonococcal AMR and
homologous AMR in other pathobionts. The hypothesis
we test is that gonococcal AMR is associated with AMR
in these pathobionts (Fig. 1). Finding evidence of such
an association, we argue that this is most parsimoniously
explained by all these bacteria being exposed to high
levels of the respective antimicrobial for all indications.

Methods
Data
Antimicrobial resistance data
The AMR data was taken from the European Centre for
Disease Prevention and Control (ECDC) Surveillance
Atlas which reports resistance prevalence estimates from
the European Antimicrobial Resistance Surveillance Net-
work (EARS-Net) - the EU’s main surveillance system
for AMR in bacteria that cause serious infections. All 28
EU Member States and two EEA countries (Iceland and
Norway) participate in EARS-Net. The countries provide
data for all eight species under surveillance (Escherichia
coli, Klebsiella pneumoniae, Streptococcus pneumoniae,
Acinetobacter spp., Pseudomonas aeruginosa, Entero-
coccus faecalis, Enterococcus faecium, Staphylococcus
aureus), with the exception of Greece which did not re-
port data on S. pneumoniae. Only data from invasive
(blood and cerebrospinal fluid) isolates are included in
EARS-Net. This is done to limit biases that may emerge
if isolates from all anatomical sites were included. Fur-
ther details can be found in the EARS-Net reporting
protocol [21]. The system depends on national network
representatives in each participating country, reporting
their locally tested susceptibility data to The European
Surveillance System on an annual basis. This data is
available for public access at https://www.ecdc.europa.
eu/en/surveillance-atlas-infectious-diseases
The N. gonorrhoeae AMR surveillance data was ex-

tracted from the same ECDC Surveillance Atlas. This
data comes from the Euro-Gonococcal Antimicrobial
Surveillance Programme which uses a different method-
ology and includes a sentinel AMR surveillance program
that tests a representative number of isolates from EU/
EEA member states every year for a range of antimicro-
bials, through a hybrid centralized/decentralized system
[22, 23]. Data is available from 2000 (or later) to 2018.

The ECDC Surveillance Atlas reports gonococcal
AMR for ciprofloxacin (a fluoroquinolone), azithromycin
(a macrolide), cefixime and ceftriaxone (both Extended
Spectrum (ES) cephalosporins) by country and year for
30 countries from 1997 to 2018. Since our hypothesis
tested homologous class bystander selection, we limited
our analysis to the 5 bacterial species that reported
AMR for fluoroquinolones, macrolides or ESCephalos-
porins (E. coli, K. pneumoniae, S. pneumoniae, Acineto-
bacter spp., P. aeruginosa). The following minimum
inhibitory concentration (MIC) breakpoints were used to
define gonococcal antimicrobial resistance: Azithromy-
cin: > 0.5 mg/L, Cefixime: > 0.12 mg/L, Ceftriaxone: >
0.12 mg/L, Ciprofloxacin: > 0.06 mg/L [1, 24]. The break-
points used for the other species are detailed elsewhere
[22, 23]. We use the term ‘antimicrobial resistance’ in its
broadest sense to include reduced susceptibility.

Antimicrobial consumption data
Data from the European Surveillance of Antimicrobial
Consumption (ESAC) were used as a measure of national
general population-level antimicrobial drug consumption
[25, 26]. ESAC provides open access to the data collected
on antimicrobial use in ambulatory care and hospital care
in 30 European countries [25, 26]. ESAC reports anti-
microbial consumption as the number of defined daily
doses (DDD) per 1000 inhabitants following the World
Health Organization guidelines [26, 27]. One DDD is de-
fined as the average maintenance dose per day for a drug
used in its main indication for adults [26]. In our study,
we used three measures of country-specific antimicrobial
drug use in ambulatory care: Cephalosporins/other Beta
lactams (ATC group J01D), fluoroquinolones (ATC group
J01MA), macrolides, lincosamides and streptogramins
(ATC group J01F). Data was available from 1998 to 2018.

Analyses
Associations between AMR in N. gonorrhoeae and other
species
For each antibiotic class, mixed effects linear regression was
used to assess the association between the prevalence of
AMR in N. gonorrhoeae and each of the other bacterial spe-
cies. The following mixed effects linear model was used:
(N.gonorrhoeae_resistance-to-X in year Y and country

C) ~ (Species-Z_resistance-to-X in year Y and country
C) + (random intercept for country C) + intercept +
error, where species-Z is one of E. coli, K. pneumoniae,
S. pneumoniae, Acinetobacter spp. or P. aeruginosa, and
X could be fluoroquinolones, macrolides or
ESCephalosporins.
We represented the visual associations in AMR between

N. gonorrhoeae and the other species with scatterplots
using peak AMR prevalence, which was defined as the
maximum AMR prevalence attained in each country for
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the period under observation. The ‘maximum AMR preva-
lence’ variable was only used in the generation of Fig. 2.

Associations between AMR and antimicrobial consumption
In separate analyses for each relevant antimicrobial-
species combination, mixed effects linear regression was
used to assess the correlation between prevalence of

AMR and antimicrobial consumption in the preceding
year. The following mixed effects linear model was used:
(MIC/resistance in year Y and country C) ~ (anti-

microbial consumption in year Y-1 and country
C) + (random intercept for country C) + intercept +
error.
The statistical analyses were performed in Stata 16.0.

A P-value of < 0.05 was regarded as significant.

Fig. 2 Association between peak antimicrobial resistance prevalence (2000 to 2018) in Neisseria gonorrhoea and other bacteria for (a) Macrolides -
Streptococcus pneumoniae, (b) Fluoroquinolones. - Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp. and (c)
Extended Spectrum Cephalosporins (ESC) - Escherichia coli and Klebsiella pneumoniae
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Ethics approval
This analysis involved ecological analyses of public ac-
cess data and thus no Ethics approval was necessary.

Results
There were large variations (up to 300-fold) in the con-
sumption of cephalosporins, fluoroquinolones and
macrolides between countries (Table 1, Figures S1-S2).
The median consumption of each class of antibiotic did
not change by more than 20% between 1997 and 2018.
For each of the bacterial species, the prevalence of AMR

varied considerably between countries (Table 1, Figures
S1-S2). There were marked increases in ESCephalosporin
and fluoroquinolone resistance over time in both E. coli
and K. pneumoniae. The prevalence of fluoroquinolone
resistance in N. gonorrhoeae declined over time.

Association between Ng AMR and other bacteria
Fluoroquinolones
The prevalence of gonococcal AMR was positively asso-
ciated with AMR prevalence in E. coli (coef. 0.52; P =
0.007), Acinetobacter spp. (coef. 0.13; P = 0.044) and P.
aeruginosa (coef. 0.36; P = 0.020) but not K. pneumoniae
(Table 2; Fig. 2).

Macrolides
Azithromycin resistance in N. gonorrhoeae was positively
associated with macrolide resistance in S. pneumoniae
(coef. 0.01; P = 0.018; Table 2; Fig. 2).

ESCephalosporins
No significant associations were found (Table 2; Fig. 2).

Association between AMR and antimicrobial consumption
Fluoroquinolones
The consumption of fluoroquinolones was positively as-
sociated with AMR prevalence in E. coli (coef. 6.13; P <
0.001), Acinetobacter spp. (coef. 4.8; P < 0.001), N. gonor-
rhoeae (coef. 3.9; P = 0.047) and K. pneumoniae (coef.
5.4; P < 0.001) but not P. aeruginosa (Table 3).

Macrolides
Macrolide resistance in S. pneumoniae (coef. 2.39; P <
0.001), but not N. gonorrhoeae was associated with
macrolide consumption (Table 3).

ESCephalosporins
No significant associations were found (Table 3).

Discussion
We found that the prevalence of gono- and pneumococ-
cal resistance to macrolides was positively associated.
Likewise, gonococcal fluoroquinolone resistance was as-
sociated with homologous resistance in three of the 4
gram-negative bacteria assessed. No associations with
ESCephalosporin resistance were found. In keeping with
a previous analysis of European data, only fluoroquino-
lone consumption was found to be associated with hom-
ologous gonococcal resistance [13]. Fluoroquinolone
AMR was significantly associated with consumption for
all four of the other bacteria assessed. These findings
suggest that fluoroquinolone consumption in the general
population (community bystander selection), is a parsi-
monious explanation for variations in fluoroquinolone
resistance in these bacteria, including N. gonorrhoeae. Of
note, these associations were strongest with E. coli which
is unsurprising if we recall that E. coli is the most preva-
lent of all the bacteria considered in the general human

Table 1 Variation in antimicrobial consumption and resistance to cephalosporins, fluoroquinolones and macrolides for six bacterial
species in 30 European Countries. Values reported as medians (interquartile ranges)

Antimicrobial
consumption

Antimicrobial Resistance

Neisseria
gonorrhoeae

Escherichia coli Klebsiella
pneumoniae

Streptococcus
pneumoniae

Acinetobacter
spp.

Pseudomonas
aeruginosa

1997 FD 2018 FD 2009 2018 2000 2018 2005 2018 2005 2018 2005 2018 2005 2018

N 14 29 17 27 4 29 21 29 26 28 26 28 26 29

ESCephalosporin 1.7
(0.6–
4.0)

313 1.9
(0.6–
2.7)

262 0.9
(0.0–
6.4)a

0.0
(0.0–
2.2)a

0.2
(0.1–
1.9)

13.8
(9.6–
19.3)

7.1
(4.1–
27.7)

30.8
(12.8–
53.3)

NA NA NA NA NA NA

Fluoroquinolone 1.0
(0.5–
1.6)

13.8 1.2
(0.8–
2.3)

7.0 70.0
(49.1–
79.2)

55.0
(44.4–
60.0)

3.8
(2.5–
6.0)

23.9
(17.7–
32.1)

11.1
(4.9–
34.0)

30.4
(13.2–
52.7)

NA NA 15.2
(8.1–
22.5)

13.3
(7.5–
20.5)

15.2
(8.1–
22.5)

15.0
(10.4–
26.0)

Macrolide 2.9
(1.8–
3.4)

5.4 2.8
(1.9–
3.6)

12.7 6.6
(2.6–
14.5)

7.7
(3.2–
12.7)

NA NA NA NA 15.2
(8.1–
22.5)

13.3
(7.5–
20.5)

NA NA NA NA

a Cefixime; ESCephalosporin Extended Spectrum Cephalosporin, FD Fold Difference in antimicrobial consumption between highest and lowest consumption
country-year, NA Not Available/Not Applicable
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population [7]. This feature would result in it being
more exposed to antimicrobial selection pressure in high
consumption populations than lower prevalence bacteria
[7, 28]. Studies from Europe and elsewhere have found
community level consumption of antibiotics such as
fluoroquinolones to be strongly associated with AMR in
E. coli [29]. A weaker or no association has been found
with bacteria whose prevalence is lower and where the
nosocomial acquisition of AMR is more important such
as K. pneumoniae [28].
Since 2012, the prevalence of macrolide resistance in

N. gonorrhoeae has been slowly increasing in Europe
[23]. By 2018, the prevalence of azithromycin resistance
exceeded 10% in 10 countries (Figure S2). European
treatment guidelines have recommended azithromycin
together with ceftriaxone as dual therapy for gonorrhoea
since 2012 [30], which represents one possible explan-
ation for this increase [31]. This should not, however,
explain the increase in AMR in certain European coun-
tries but not others. No individual or ecological-level
study that we are aware of has found an association be-
tween dual therapy and azithromycin reduced suscepti-
bility. European guidelines for non-gonococcal urethritis
have strongly advocated doxycycline over azithromycin
to prevent bystander selection for macrolide resistance
selection in other STIs [32]. This should have lessened
the STI bystander selection pressure. Our finding that
gonococcal macrolide resistance is weakly associated

with resistance in S. pneumoniae suggests that
community-level macrolide consumption may be playing
a role. This may sound odd considering we found no
statistically significant association between macrolide
consumption and resistance in N. gonorrhoeae. Macro-
lide exposure is, however, a well-established determinant
of AMR in both species [14, 33] and was associated with
resistance in S. pneumoniae. The considerably lower
prevalence of gono- compared to pneumococcus as well
as biological differences between the organisms may ex-
plain the weaker association between consumption and
resistance in N. gonorrhoea. There are significant parallels
between the pathways to macrolide resistance in these two
bacteria. In both, resistance is mediated by 23S rRNA target
modification and enhanced efflux, conferring high- and
low-level resistance, respectively [19, 34, 35]. Furthermore,
in both, horizontal gene transfer (via transformation or
transposons) from commensal oro- and naso-pharyngeal
Streptococci/Neisseria has been shown to play an important
role in macrolide resistance via uptake of DNA that results
in enhanced efflux of macrolides [19, 35, 36]. A single dose
of a macrolide can result in long term (over 6-month) ele-
vations in the proportion of commensal Streptococci [37]
and possibly commensal Neisseria [18, 38] with macrolide
resistance. This means that a gono- or pneumococcal
pharyngeal infection many months after a dose of macro-
lides may still be able to take up the resistance-conferring
DNA from commensals. This delayed effect between

Table 2 Mixed-Effects Linear Regression Analyses of the Relationship Between Antimicrobial Resistance (AMR) in N. gonorrhoeae
with other pathobionts in 30 European countries

Azithromycin Ciprofloxacin Cefixime

Coeff. ± SE P Coeff. ± SE P Coeff. ± SE P

Escherichia coli NA 0.52 ± 0.19 0.007 −0.005 ± 0.075 0.948

Klebsiella pneumoniae NA 0.01 ± 0.10 0.943 0.02 ± 0.03 0.503

Streptococcus pneumoniae 0.01 ± 0.004 0.018 NA NA

Acinetobacter spp. NA 0.13 ± 0.06 0.044 NA

Pseudomonas aeruginosa NA 0.36 ± 0.15 0.020 NA

NA Not Available/Not Applicable, SE Standard Error

Table 3 Mixed-Effects Linear Regression Analyses of the Relationship Between Antimicrobial Resistance (AMR) and homologous
class Antimicrobial Consumption Among Select Pathobionts in 30 European countries

Azithromycin Ciprofloxacin ESC/Cefixime

Coeff. ± SE P Coeff. ±SE P Coeff. ± SE P

Escherichia coli NA 6.13 ± 0.60 < 0.001 0.52 ± 0.155 0.155

Klebsiella pneumoniae NA 5.44 ± 1.20 < 0.001 −0.08 ± 077 0.910

Streptococcus pneumoniae 2.39 ± 0.61 < 0.001 NA NA

Acinetobacter spp. NA 4.75 ± 1.34 < 0.001 NA

Pseudomonas aeruginosa NA 0.34 ± 0.82 0.676 NA

Neisseria gonorrhoeae 0.52 ± 0.40 0.181 3.86 ± 1.94 0.047 0.49 ± 0.29 0.095

NA Not Available/Not Applicable, ESC Extended Spectrum Cephalosporins, SE Standard Error
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antimicrobial consumption and resistance may make it
more difficult to detect in traditional epidemiological
studies.
Further investigations to confirm these associations

and elucidate the underlying pathways are required. We
evaluated a very limited number of bacteria and found E.
coli and S. pneumoniae to have the strongest associa-
tions with gonococcal fluoroquinolone and macrolide re-
sistance, respectively. It is possible that the associations
may be stronger in other species. Crucially there is a
need to monitor AMR in commensal Neisseria species
in populations at high risk for gonococcal AMR [39, 40].
For both macrolides and fluoroquinolones, our results rep-

resent additional evidence for the community antibiotic the-
ory. More specifically, they suggest that gonococcal
antimicrobial resistance can be productively viewed as being
part of a syndemic of resistance. The results, therefore, build
on those from global analyses which found that a likely key
reason why gonococcal AMR frequently emerged in core
groups in Asia and elsewhere, was related to high consump-
tion of antimicrobials in these populations [11, 40, 41]. ESCe-
phalosporin resistance, for example, first emerged in Japan
[19]. At least in part, this was likely due to the extraordinary
high ESCephalosporin consumption in Japan at the time –
over double the consumption of the country with the next
highest consumption [11]. ESCephalosporin AMR emerged
rapidly in other organisms in the Asia Pacific region around
the same time but, as was the case with N. gonorrhoeae, it
did not spread uniformly throughout the region [42–44]. In
the rural parts of Northern Territory, Australia, for example,
there is almost no gonococcal resistance to ESCephalospor-
ins or azithromycin, a finding that is likely attributable to low
antimicrobial consumption [43, 45]. Likewise, a phylogenetic
analysis of 419 isolates from around the world found that
modern gonococci were split into two lineages [41]. Lineage
A was found to have arisen in Asia and had a high preva-
lence of AMR associated mutations (modal number of AMR
mutations 7). This was thought to be due to high exposure
to antimicrobials. The African lineage B, however, had far
fewer AMR associated mutations (modal number of AMR
mutations 0) – presumably due to lower antimicrobial ex-
posure. These findings of populations with low levels of
gonococcal AMR are important because they reveal that
gonococcal AMR is not as inevitable as is commonly sup-
posed but may be prevented or delayed [11, 46].
There are a number of important limitations to this

analysis. The EARS-Net data are not based on uniform
central testing of isolates. The breakpoints for resistance
have also changed during the period under investigation.
For example, EUCAST lowered its fluoroquinolone
breakpoints for resistance in K. pneumoniae in 2016,
which could influence longitudinal analyses such as the
current one [28]. We did not adjust our analyses for ei-
ther differences in MIC testing strategies or changes in

breakpoints over time. In both cases, these factors would
operate as misclassification biases which typically result
in a bias towards the null hypothesis [47]. This would be
expected to reduce the statistical strength of any associ-
ation found. Our measure of antimicrobial consumption
was based on ESAC data whose consumption estimates
are very similar to those produced by different method-
ologies such as that used by IQVIA-MIDAS [48, 49]. We
were unable to assess exposure using alternative mea-
sures such as days of therapy. The measure of consump-
tion used does not, however, include consumption in
hospitals which is an important determinant of AMR for
some of the bacteria we evaluated. We were also unable
to control for confounders, such as various environmen-
tal and socioeconomic variables that are associated with
the spread of AMR [50]. It is also possible that STI ser-
vices in high antimicrobial consumption countries may
be more likely to prescribe antibiotics to clients than
those in low consumption countries. Whilst we did not
control for this in our models, it could be argued that it
would be inappropriate to control for this since this is
an effect mediator rather than a confounder. Finally, it is
possible that a selection bias pertained whereby certain
countries were more likely to send more resistant iso-
lates for N. gonorrhoeae and the other bacteria. The fact
that the N. gonorrhoeae AMR data is obtained from the
Euro-GRASP survey, which has a separate surveillance
system and does not depend on isolates from blood cul-
tures makes this bias less likely. Validation studies have
also concluded that, with the exception of beta-lactam
resistance in S. pneumoniae and plasmid-mediated colis-
tin resistance in the Enterobacteriaceae, the EARS-net
AMR prevalence estimates are relatively accurate [51].
Evidence that gonococcal AMR is part of a syndemic of re-

sistance is an important finding as it suggests that minimizing
the probability of further AMR emerging in N. gonorrhoeae
would benefit from antibiotic stewardship campaigns to re-
duce total consumption of antibiotics. The probability of by-
stander selection affecting N. gonorrhoeae is considerably
higher in core-groups such as HIV preexposure prophylaxis
populations where the prevalence of N. gonorrhoeae is around
10% [52, 53]. Gonococcal AMR has also frequently emerged
in these types of core groups with high gonococcal prevalence
and high antimicrobial consumption [40, 53]. As a result, it
may be prudent to focus stewardship campaigns on both gen-
eral populations with high antimicrobial consumption as well
as core-groups in all populations [54].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13756-020-00764-z.

Additional file 1 Figure S1. Fluoroquinolone (FQ) consumption and
prevalence of antimicrobial resistance to fluoroquinolones in Neisseria

Kenyon et al. Antimicrobial Resistance and Infection Control            (2020) 9:97 Page 7 of 9

https://doi.org/10.1186/s13756-020-00764-z
https://doi.org/10.1186/s13756-020-00764-z


gonorrhoeae (Ng) and Escherichia coli (Ec) in 30 European countries.
Figure S2. Macrolide consumption and prevalence of antimicrobial
resistance to azithromycin in Neisseria gonorrhoeae (Ng) and macrolides
in Streptococcus pneumoniae (Sp) in 30 European countries.
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