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Abstract 

Background:  The distribution of β-lactam resistance genes in P. aeruginosa is often closely related to the distribu-
tion of certain high-risk international clones. We used whole-genome sequencing (WGS) to identify the predominant 
sequence types (ST) and β-lactamase genes in clinical isolates of multidrug-resistant (MDR)-P. aeruginosa from Qatar

Methods:  Microbiological identification and susceptibility tests were performed by automated BD Phoenix™ system 
and manual Liofilchem MIC Test Strips.

Results:  Among 75 MDR-P. aeruginosa isolates; the largest proportions of susceptibility were to ceftazidime-avibac-
tam (n = 36, 48%), followed by ceftolozane-tazobactam (30, 40%), ceftazidime (n = 21, 28%) and aztreonam (n = 16, 
21.3%). All isolates possessed Class C and/or Class D β-lactamases (n = 72, 96% each), while metallo-β-lactamases 
were detected in 20 (26.7%) isolates. Eight (40%) metallo-β-lactamase producers were susceptible to aztreonam and 
did not produce any concomitant extended-spectrum β-lactamases. High risk ST235 (n = 16, 21.3%), ST357 (n = 8, 
10.7%), ST389 and ST1284 (6, 8% each) were most frequent. Nearly all ST235 isolates (15/16; 93.8%) were resistant to all 
tested β-lactams.

Conclusion:  MDR-P. aeruginosa isolates from Qatar are highly resistant to antipseudomonal β-lactams. High-risk STs 
are predominant in Qatar and their associated MDR phenotypes are a cause for considerable concern.
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Background
Due to their established efficacy and safety, anti-pseu-
domonal β-lactam antibiotics play a vital role in the 
clinical management of P. aeruginosa infections [1]. Key 
antimicrobial resistance mechanisms in P. aeruginosa 
include over-expression of efflux pumps, impermeabil-
ity through porin modification or loss, target modifica-
tion, and enzyme-mediated antimicrobial inactivation 
(e.g., β-lactamases). Multiple resistance mechanisms are 
frequently present in concert resulting in simultaneous 
resistance to multiple agents [1]. The epidemiology of 

β-lactamases is often closely related to the distribution 
of certain high-risk international clones [2]. In this study, 
we used whole-genome sequencing (WGS) to identify 
the predominant sequence types (STs) and β-lactamase 
genes in multi-drug resistant (MDR) P. aeruginosa clini-
cal isolates from Qatar.

Methods
The study setting, bacterial identification, antimicrobial 
susceptibility testing, whole genome sequencing, and 
statistical analysis details are provided in Additional File 
1. MDR status was defined as in-vitro resistance to at 
least one agent from three or more classes of anti-pseu-
domonal agents [3]. β-lactamases were classified accord-
ing to their molecular groups [4]. Clinical data were 
retrieved from the electronic healthcare system.
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Results
Seventy-five MDR-P. aeruginosa isolates were included 
(Additional file  1: Table  S1). The largest proportions of 
susceptibility were to ceftazidime-avibactam [36, 48%; 
minimum inhibitory concentration (MIC)50/90 12/256 µg/
ml] and ceftolozane-tazobactam (30, 40%; MIC50/90 
24/256  µg/ml) (Fig.  1). Four (5.3%) isolates were resist-
ant to all tested β-lactams except ceftazidime-avibactam, 
while only one (1.3%) isolate was only susceptible to cef-
tolozane-tazobactam (Additional file 1: Table S1).

Almost all isolates possessed Class C and Class D 
β-lactamases (72, 96% each). All 4 β-lactamase classes 
were present in 3 (4%) isolates. Metallo-β-lactamases 
(MBL) were detected in 20 (26.7%) isolates. Eight (40%) 
MBL producers were susceptible to aztreonam and 
did not produce any concomitant extended-spectrum 
β-lactamases (ESBL) (Additional file 1: Table S1).

The most frequent STs identified were ST235 (16, 
21.3%) and ST357 (8, 10.7%) (Fig. 2). All but one ST235 
isolate were resistant to all tested β-lactam agents. Fur-
thermore, amongst the 16 ST235 MDR-P. aeruginosa iso-
lates included in this study, MBL were detected in nine 
(56.3%), blaVEB-9 in 8 (50%), blaPDC-2 in 15 (93.8%), and 
blaOXA-10 and blaOXA-50 in all 16 (100%). There were five 
ST233 MDR-P. aeruginosa isolates; all possessed blaVIM-2, 

blaPDC-3, blaOXA-4 and blaOXA-486, and four (80%) of them 
were resistant to all tested β-lactams except aztreonam. 
Different patterns of β-lactamase genes and β-lactam 
susceptibility were observed in other STs (Additional 
file 1: Table S2).

Discussion
This study included data representative of the whole 
country, as it analyzed isolates from a national diag-
nostic laboratory. Notably, MDR-P. aeruginosa in Qatar 
are highly resistant to β-lactam agents. The most active 
β-lactam antibiotics in this study were those in combina-
tion with β-lactamase inhibitors, ceftazidime-avibactam 
and ceftolozane-tazobactam, were not available for clini-
cal use at the time of the study. Yet, less than half of the 
isolates were susceptible. Given their recent availability 
for patients in Qatar, the results reported demonstrate 
the importance of their appropriate clinical use to mini-
mize further loss of activity [5].

This report included 20 (26.67%) isolates that pos-
sessed 21 MBL-encoding genes (16 blaVIM-2, 2 blaVIM-5, 
and 3 blaIMP-2) (Additional file 1: Tables S1 and S2). This 
is consistent with the known predominance of Verona 
integron-encoded metallo-β-lactamases (VIM), and to a 
lesser extent imipenemases (IMP), in P. aeruginosa from 

Fig. 1  Antimicrobial susceptibility testing results for 75 MDR-P. aeruginosa isolates from Qatar. Columns represent number (Y axis) of isolates 
susceptible and line represents percentage (Z axis) of isolates susceptible to the corresponding antipseudomonal β-lactam. Reporting is based 
on CLSI breakpoint recommendations (M100, 30th edition—January 2020). ATM, aztreonam; CAZ, ceftazidime; CZA, ceftazidime-avibactam; C/T, 
ceftolozane-tazobactam; FEP, cefepime; MEM, meropenem; MIC, minimum inhibitory concentration in µg/mL, TZP, piperacillin-tazobactam



Page 3 of 5Sid Ahmed et al. Antimicrob Resist Infect Control           (2020) 9:170 	

the Middle East [6–8]. Unlike other geographic settings, 
New Delhi metallo-β-lactamases (NDM) have not been 
detected in P. aeruginosa from the Arabian Peninsula [7, 
9].

Apart from areas with a high prevalence of MBL in P. 
aeruginosa, the presence of Class A ESBL β-lactamases 
can result in resistance to ceftolozane-tazobactam 
[1]. Avibactam is an efficient inhibitor of Class A 
β-lactamases and hence ceftazidime-avibactam com-
bination retains its activity in this situation but not cef-
tolozane-tazobactam [10, 11]. In a report from Spain 
of 24 extremely-drug resistant ST235 P. aeruginosa iso-
lates, 13% were susceptible to ceftolozane-tazobactam 
and 58% to ceftazidime-avibactam and the predominant 
β-lactamases identified were VIM-2 (42%) and the Class 
A ESBL Guiana-Extended-Spectrum (GES)-5 (46%) [12]. 
Consistent with this, five out of seven ceftolozane-tazo-
bactam-resistant, ceftazidime-avibactam-susceptible 
MDR-P. aeruginosa isolates in our study possessed class 
A blaSHV-11 and ESBL-encoding genes such as blaVEB-9 

and blaTEM-116. Interestingly, those 7 isolates belonged to 
seven different STs (Additional file 1: Table S1).

The β-lactamase blaVEB-9 (19, 25.33%), formerly known 
as blaVEB-1a, was the most frequent ESBL gene identi-
fied in the present study [11]. blaVEB-1 is one of the most 
frequently reported ESBLs in P. aeruginosa from the 
Middle East including Kuwait, Saudi Arabia and Iran 
[13–15]. Though blaVEB-9 was reported from Thailand 
and Eastern Europe, to the best of our knowledge, it has 
not been previously reported from the Middle East [11, 
16]. In this study, MDR-P. aeruginosa producing Viet-
namese extended-spectrum beta-lactamase-9 (VEB-9) 
belonged to ST235 (8/16), ST357 (7/8), ST308 (1/3) and 
ST3022 (1/1) (Additional file  1: Tables S1 and S2). This 
pattern suggests dissemination within specific P. aerugi-
nosa STs in Qatar that may be different from neighboring 
countries.

An interesting observation in this study was that 
16 (21.33%) MDR-P. aeruginosa isolates were sus-
ceptible to aztreonam but resistant to several other 

Fig. 2  Distribution of sequence types of MDR-P. aeruginosa (n = 75) isolated in Qatar from 2014 to 2017
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antipseudomonal β-lactams tested (Additional file  1: 
Table  S1). Aztreonam is a weak inducer of Class C 
enzymes and is not a substrate for Class B and narrow-
spectrum Class D β-lactamases [17]. The retained aztre-
onam activity in these isolates despite resistance to other 
antipseudomonal β-lactams may be explained by the 
absence of Class A ESBL in those isolates. Therefore, 
aztreonam should be included in routine antimicrobial 
susceptibility testing of clinical P. aeruginosa isolates.

Most MDR-P. aeruginosa isolates included in this study 
belonged to five STs and had consistent β-lactamase 
genetic profiles and β-lactam susceptibility patterns 
(Additional file  1: Table  S2). ST235, ST233, and ST357 
are already known as high-risk clones in Qatar, Saudi 
Arabia, Bahrain, and the United Arab Emirates [7]. These 
three STs are globally disseminated MDR-P. aeruginosa 
clones [2]. Often, these strains cause regional or nation-
wide outbreaks, express MDR phenotypes, and are asso-
ciated with high mortality [12, 18, 19]. VIM-producing 
ST1284 P. aeruginosa have been described from Brazil, 
and ST389 from cystic fibrosis patients in Italy [20, 21]. 
Both sequence types have otherwise limited geographic 
distribution.

Conclusion
MDR-P. aeruginosa isolates from Qatar are highly resist-
ant to antipseudomonal β-lactams. Global high-risk STs 
predominate in Qatar and their associated multi-resist-
ant phenotype is a cause for considerable concern.
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