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Abstract 

Background:  More evidence is emerging on the role of surface decontamination for reducing hospital-acquired 
infection (HAI). Timely and adequate removal of environmental pathogens leads to measurable clinical benefit in both 
routine and outbreak situations.

Objectives:  This systematic review aimed to evaluate published studies describing the effect of automated tech‑
nologies delivering hydrogen peroxide (H202) or ultra-violet (UV) light on HAI rates.

Methods:  A systematic review was performed using relevant search terms. Databases were scanned from January 
2005 to March 2020 for studies reporting clinical outcome after use of automated devices on healthcare surfaces. 
Information collected included device type, overall findings; hospital and ward data; study location, length and size; 
antimicrobial consumption; domestic monitoring; and infection control interventions. Study sponsorship and dupli‑
cate publications were also noted.

Results:  While there are clear benefits from non-touch devices in vitro, we found insufficient objective assessment 
of patient outcome due to the before-and-after nature of 36 of 43 (84%) studies. Of 43 studies, 20 (47%) used hydro‑
gen peroxide (14 for outbreaks) and 23 (53%) used UV technology (none for outbreaks). The most popular pathogen 
targeted, either alone or in combination with others, was Clostridium difficile (27 of 43 studies: 63%), followed by 
methicillin-resistant Staphylococcus aureus (MRSA) (16 of 43: 37%). Many owed funding and/or personnel to industry 
sponsorship (28 of 43: 65%) and most were confounded by concurrent infection control, antimicrobial stewardship 
and/or cleaning audit initiatives. Few contained data on device costs and rarely on comparable costs (1 of 43: 2%). 
There were expected relationships between the country hosting the study and location of device companies. None 
mentioned the potential for environmental damage, including effects on microbial survivors.

Conclusion:  There were mixed results for patient benefit from this review of automated devices using H202 or UV 
for surface decontamination. Most non-outbreak studies lacked an appropriate control group and were potentially 
compromised by industry sponsorship. Concern over HAI encourages delivery of powerful disinfectants for eliminat‑
ing pathogens without appreciating toxicity or cost benefit. Routine use of these devices requires justification from 
standardized and controlled studies to understand how best to manage contaminated healthcare environments.

Keywords:  Decontamination, Environment, Hospital-acquired infection, Ultraviolet light, Hydrogen peroxide, Toxicity, 
Cost
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Introduction
Hospital-based cleaning and disinfection of environmen-
tal surfaces is now recognised as a crucial component 
of infection prevention and control [1]. This has gener-
ated interest in a range of automated decontamination 
technologies over the past decade. So-called ‘no-touch’ 
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devices disperse chosen microbiocidal products into the 
healthcare environment in order to disinfect surfaces and 
reduce the risk of hospital-acquired infection (HAI) [2].  
Given that the agents utilised by these devices are toxic to 
humans, the mobile equipment designed to deliver them 
are necessarily controlled through remote access. Chemi-
cal products include chlorine dioxide, hydrogen peroxide 
and ozone in gaseous form; and peracetic acid, quater-
nary ammonium compounds and hydrogen peroxide as 
aerosols [1–3].  Another compound, peroxone, combines 
hydrogen peroxide and ozone to create a dual system 
with enhanced oxidation [4].  Alternative decontamina-
tion technology makes use of ultra-violet (UV) light, 
which is produced  using either mercury or xenon bulbs 
[1–3].  There are multiple reports describing the in vitro 
effect of these systems, but studies investigating the clini-
cal impact on hospital patients tend to favour devices 
dispelling either hydrogen peroxide or UV light. It was 
decided to review these specific technologies in order to 
further examine their effects on clinical benefit and cost.

Most UV devices use low-pressure mercury gas bulbs 
to generate UV-C light with a targeted wavelength of 
254  nm; pulsed xenon devices produce a broader spec-
trum of UV light in short pulses with a target wavelength 
of 200–315 nm [3].  UV light breaks DNA bonds result-
ing in death of microorganisms, including spores [5].  
Aerosolized hydrogen peroxide systems utilize 3–7% 
hydrogen peroxide, sometimes with silver ions, with 
particle sizes ranging from 2 to 12 μm [6].  These parti-
cles are released into a room, followed by passive aera-
tion. The vapour system is based on micro-condensation, 
which allows the vaporization of concentrated (30–35%) 
hydrogen peroxide under controlled humidity [6].

While there is no doubt over the in  vitro capacity of 
these technologies to eliminate surface pathogens, there 
are concerns over practicalities of use, toxicity and cost-
benefits in  vivo [7, 8].  Not all studies report complete 
removal of specific pathogen reservoirs or, indeed, sig-
nificant reductions in HAI rates. It is clear that prior 
removal of dirt is essential before deployment of these 
devices [9–11].  There is additional concern over the data 
provided since selective reporting from quasi-experi-
mental studies does not necessarily offer a balanced view 
of the technology evaluated [12].  Some studies are con-
flicted by ongoing or newly introduced infection preven-
tion or cleaning interventions during the study period; 
others report, or fail to report, concurrent or newly 
introduced antimicrobial stewardship initiatives [13, 14].  
Many studies omit mention of environmental monitor-
ing, cleaning efficacy or even baseline cleaning protocols 
[7, 14].  Furthermore, studies using these devices do not 
necessarily disclose sources of funding or declare poten-
tial conflicts from industry sponsorship, including the 

provision of training, equipment, report writing and/or 
personnel [1, 15].

The aim of this systematic review is to critically assess 
study design, confounders, costs and overall clinical 
outcome for decontamination devices using hydro-
gen peroxide or UV light for surfaces in the healthcare 
environment. Given the recent increase in use of these 
devices, it is timely to offer objective comments on real 
life impact for patients and healthcare budgets [7].

Methods
A systematic review was performed using relevant 
search terms: [hospital or healthcare] + [disinfection or 
decontamination] + [hydrogen peroxide or ultraviolet 
light] (Fig.  1). The databases employed were PubMed, 
CINAHL, CDSR, DARE and EMBASE from Jan 2005 
to March 2020 for studies evaluating automated device 
technology using ultraviolet microbiocidal light (UV) 
or hydrogen peroxide (H202) in healthcare facilities for 
contamination on surfaces ± air using indicator patho-
gens ± aerobic colony counts; cost of technology; and 
HAI rates for Clostridium difficile, methicillin-resistant 
Staphylococcus aureus (MRSA), vancomycin-resistant 
enterococci (VRE), coliforms (Escherichia coli, Kleb-
siella pneumoniae, Enterobacter spp., Serratia spp.), 
Pseudomonas spp., Acinetobacter spp., and generic 
multidrug-resistant organisms (MDROs) including 
extended-spectrum-beta-lactamase producing coliforms 
(ESBLs). Studies describing in vitro; in situ; experimental 
and/or surface effects of non-touch technologies with-
out concurrent data on patient impact were scanned 
before exclusion, along with non-English papers, posters 
and conference reports (Fig. 1). Hospital location, types, 
study ward/unit, study length and size, antimicrobial 
consumption (total; specific classes); domestic monitor-
ing, infection control interventions and other variables 
that might impact on the results were noted. Specialist 
healthcare environments such as outpatients, pharmacies 
and clean rooms were excluded, as were articles describ-
ing microbiological impact of automated devices on spe-
cific items of equipment. Published data was checked for 
duplicate or linked publications, funding, sponsors and 
industry involvement if acknowledged.

Statistical analysis
Statistical review and analysis was applied to common 
data presented in selected device papers. Risk of bias was 
assessed for each study by evaluating study design, meth-
odological consistency, infection control confounders, 
population and study unit heterogeneity, sampling bias, 
outcome evaluation, involvement of sponsor and selec-
tive reporting. Power calculations and overall numbers 
were examined against reported significance values.
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Results
Study demographics
There were a total of 43 studies presenting the effects 
on HAI rates from automated devices delivering either 
hydrogen peroxide or UV light (Table 1; Figs. 1, 2) [16–
58].  These were published between 2005 and 2020 and 
include brief reports and letters describing either inter-
vention or outbreak control studies involving different 
hospitals from eight countries in the developed world. 
Of these, 20 (47%) used some form of hydrogen peroxide 
delivery (14 for outbreaks) and 23 (53%) used UV tech-
nology (none for outbreaks). Over half the papers (28; 
65%) originated from the USA, with six describing the 

effects of hydrogen peroxide devices [37, 38, 47, 49, 55, 
57] and 22 utilising UV technology (Fig. 3) [16, 18, 21–31, 
34–36, 39–41, 43, 48, 50].  Five (12%) studies were based 
in the UK, all using hydrogen peroxide, [32, 44, 53, 56, 
58] and three (7%) others using hydrogen peroxide were 
performed in France (Fig. 4) [45, 46, 51].  Two (5%) stud-
ies each using hydrogen peroxide originated from Spain 
[19, 33] and The Netherlands, [20, 54] and there was one 
(2%) study each from Japan (UV) [17], Poland (hydrogen 
peroxide) [52] and Tasmania (hydrogen peroxide) [42].  
There were no studies reporting use of UV in Europe.

Most (36: 84%) were before-and-after studies, includ-
ing 14 (33%) outbreak interventions [19, 20, 33, 44–46, 

Articles identified through database searching using 
search terms [hospital or healthcare] + [disinfection 
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All articles with in vitro data, 
outbreaks and interventions 

(n = 801)

Articles on toxicity, specialist 
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dental, ophthalmic), media
(air/water) & equipment excluded

Full-text articles assessed for 
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intervention
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Papers without data on 
clinical infection rates or 

patient numbers excluded 
(n = 52)

Studies included in 
systematic review 

(n = 43)

Fig. 1  PRISMA 2009 Flow Diagram for selecting papers for a systematic review on use, cost and clinical efficacy of automated decontamination 
devices
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51–58]; three (7%) originated from the same cluster ran-
domised prospective study (Benefits of Enhanced Termi-
nal Room Disinfection: BETR study) [21, 24, 30] and the 

remaining four (9%) were controlled studies, [25, 27, 47] 
with one interrupted time series that included a control 
arm [31].

Table 1  Data from 43 original or outbreak studies reporting patient benefit from use of UV or H202 automated devices
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There were many different types of hospitals involved 
in assessing decontamination devices, mostly university 
and tertiary hospitals with 400–2000 beds; and some 
district general or community hospitals (100–400 beds) 
or long term care hospitals (50–170 beds). There were 
two studies performed exclusively in burns unit [34, 51]; 
these, along with others, did not indicate the type of host 

hospital. Other specialist units included intensive care 
[17, 26, 32, 33, 35, 39, 40, 45, 46, 52, 54]; neonatal [58]; 
biohazard [26] and treatment rooms [51]; bone marrow 
transplant [16, 23, 25]; haematology and/or oncology 
[16, 20, 25, 31]; respiratory therapy room [27]; operating 
theatres [36, 43, 48]; dialysis unit [43]; stroke rehabilita-
tion [44]; accident and emergency [48]; and three studies 

Table 1  (continued)
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mentioned bathrooms [27] and/or communal areas [26, 
27, 41].

Figure 2 shows the year of publication for each study. 
From 2005 to 2014, most of the studies employed 

hydrogen peroxide devices (14 of 17: 82%) whereas 
from 2015 to 2020, the studies predominantly focussed 
on UV devices (20 of 26: 77%). The total length of 
the studies, i.e. period of time over which data was 

Table 1  (continued)
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gathered, ranged from 18  weeks to 3  years for out-
breaks (n = 14), with a median time of 17–18  months 
and an average duration of 16 months. For intervention 
studies (n = 29), the total length of time ranged from 
6  months to 7  years; the median time was 27  months 
and the average was 30 months (Table 1).

Effect on HAI rates
All 43 studies presented an assessment of chosen tech-
nology on HAI rates, which described the effect on one 
specific pathogen or a combination; from Clostridium 
difficile, methicillin-resistant Staphylococcus aureus 
(MRSA), multi-drug resistant Gram-negative coliforms 

Table 1  (continued)



Page 8 of 18Dancer and King ﻿Antimicrob Resist Infect Control           (2021) 10:34 

Table 1  (continued)
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(MDRGN), multi-drug resistant Acinetobacter (MDRA), 
Pseudomonas aeruginosa, vancomycin-resistant entero-
cocci (VRE), combined multiply drug resistant organisms 

(MDROs); or overall HAI rates; or surgical site, catheter 
and device infection rates (Table  1). The most popular 
pathogen to control with automated devices, either alone, 

Table 1  (continued)
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Table 1  (continued)
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or in combination with others, was C. difficile (27 of 43 
studies: 63%), followed by MRSA (16 of 43: 37%); MDRA 
(15 of 43: 35%); VRE (14 of 43: 33%) and MDRGN (12 of 
43: 28%). There were 29 of 43 studies (67%) that also per-
formed before and after sampling of the environment for 
the same pathogens as monitored for patient infections.

Most studies reported either reductions in HAI rates 
for the study pathogen(s) or resolution of an outbreak. 
Some studies reported effects on one or more pathogen 
rates along with no change or even increases in other 
pathogen rates. Two studies reported an increase in 
C.difficile rates using UV and H2O2 [18, 32] and another 
reported static rates for C. difficile and VRE following UV 
use in a bone marrow transplant unit [23].  One analy-
sis of the BETR study (using UV) saw a reduction only in 
VRE and not in rates of infection due to C. difficile, MRSA 
or Acinetobacter, although the latter numbers were so 
small, the effect could not be analysed [24].  Other C. dif-
ficile studies using UV showed no statistically significant 
decrease over a 25 month period, [28] while at the same 
time rates decreased for the bone marrow transplant unit 
in the same hospital; [16] another UV study reported a 
decline in C. difficile but not for other pathogens includ-
ing MRSA [31].  Mixed results for UV were also found by 
Vianna et  al., with reductions in C. difficile and VRE in 
the study ICU but increasing MRSA and static VRE rates 
outside the ICU [35].  One study using UV on a burn 
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unit found no significant impact on total MDRO, device-
associated infections or MDRGNs [34].  One study tar-
geted operating theatres and measured the impact of UV 
on surgical site infection rates; these decreased for ‘clean’ 
but not for ‘clean contaminated’ surgery, which actually 
increased by 23% [36].  Several studies saw non-signifi-
cant effects on MRSA using both H2O2 [38, 47] and UV 
[39], and another UV study achieved a reduction in C. 
difficile rates only after introducing a supervised cleaning 
team targeting hand-touch sites with bleach wipes [50].  
One protracted outbreak of MDRA reoccurred despite 
hydrogen peroxide and additional infection control inter-
ventions [45] and another recovered the outbreak MDRA 
from the environment 2–3 weeks after hydrogen perox-
ide treatment [55].

Common confounders
Infection prevention and control
Controlling an environmental decontamination study is 
fraught with confounders, often due to concurrent or new 
initiatives in infection prevention and control introduced 
before, or during, the study. Some authors recognised the 

importance of these confounders and collected additional 
data in order to regulate possible conflicting effects, e.g. 
antimicrobial consumption; hand hygiene; and patient 
screening. These studies usually discussed the poten-
tial impact on overall findings. Others mentioned infec-
tion control activities implemented before or during 
the study without providing any detail or discussion on 
potential impact; this may have been mandated by a bun-
dled approach during an outbreak or lack of space in a 
brief publication. Some demonstrated obvious conflicts, 
such as lack of admission screening, antimicrobial pre-
scribing changes, staff education programmes or use of 
powerful disinfectants before, or during, device deploy-
ment. These studies would have been seriously compro-
mised by such initiatives, when such activities are already 
known to have a major impact of HAI rates. The studies 
by Raggi et al.  [22] and Haas et al.  [43], Ethington et al.  
[26], Kane et al.  [27], McCord et al.  [37] and Horn and 
Otter  [38] illustrate a range of pitfalls in a decontamina-
tion assessment [59].  Conversely, the articles by Pegues 
et al.  [31] and Brite et al.  [23] are good examples of stud-
ies that attempted to control confounders.
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Fig. 4  Location of H202 industries and study institutions in Europe
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Monitoring cleaning and cleanliness
Cleaning staff are very susceptible to Hawthorne effects 
when a research study involves sampling general sur-
faces in the clinical environment [60, 61].  One mecha-
nism for controlling changes in compliance by domestic 
staff is to introduce some type of monitoring; either by 
measuring cleaning compliance using fluorescent tag-
ging, or by evaluating cleanliness using ATP detection 
to assess surface levels of organic soil [7].  Other meth-
ods involve direct observation of cleaners; supervisory 
sign-off; check lists; feed-back; and visual monitoring [2].  
The microbiological sampling performed in many stud-
ies would have had an effect on cleaning staff because 
this would have been difficult to blind and would have 
sent out strong messages regarding cleaning efficiency. 
If cleaning staff detect interest in the work they do, then 
they usually ‘up the game’ in order to alleviate any threat 
toward their jobs [61]. This would have impacted on 
overall outcome, environmental sampling data and even 
HAI rates.

There is little, if any, mention of this predictable psy-
chological reaction in any of the studies in this review. 
Formal monitoring is, however, mentioned in 16 of 43 
(37%) studies, with use of ATP and feedback to clean-
ing staff as the two most common methods employed 
(Table  1). One study introduced both ATP and fluores-
cent gel tagging along with a cleaning check list and new 
environmental services contractor [43].  Sitzlar et  al. 
used several methods of monitoring in their study; this 
proved helpful, given that a newly formed cleaning team 
for CD patient rooms with supervisory sign off achieved 
the outcome sought after UV failed to eradicate hospital-
acquired C.difficile [50].

Business and industry involvement
Inevitably, sponsorship issues arise in this review of auto-
mated decontamination devices. Environmental cleaning 
studies are often funded by manufacturers of cleaning 
agents or disinfection technologies and this encourages 
potential conflicts of interest and the introduction of real 
or perceived biases into the evidence base [62]. There are 
many forms of sponsorship available from business and 
industry, ranging from full or part study funding; dona-
tion or lending of equipment; device discounts; imple-
mentation and engineering technicians; scientific support 
including article writing and statistical analyses; industry 
personnel with in the research team; study supervision; 
free education and training; and  device maintenance, 
among others. A total of 28 of 43 (65%) studies reported 
some form or other of industry support, with at least 
20 of 43 (46%) studies including industry personnel in 
the authorship (Table  1). Among reported declarations, 
there were three main companies providing support and 

authors for 20 of 43 (46%) studies; these were Bioquell  
[37, 38, 47, 49, 51, 53, 54, 56–58], Xenex [17, 25, 34–36, 
41], and Clorox [21, 24, 30, 31].

There is an additional sideways strategy for industry 
involvement in promoting device evaluation. This comes 
in the form of sharing authors with specific expertise 
for independent studies using the same brand of device. 
These authors are not necessarily employees of the com-
pany but may be contracted or asked to provide support 
such as statistical analysis, writing or laboratory testing. 
This was evident in studies using UV devices, in particu-
lar [22, 26, 27, 35, 36, 39, 41].  Another strategy is so-
called ‘salami slicing’, whereby multiple publications are 
linked with one original study; this is seen with the BETR 
study, which generated several papers examining whole 
or partial datasets using different objectives and/or per-
spectives for analyses [21, 24, 30, 63–65].  While none of 
these approaches necessarily challenge long held editorial 
standards on plagiarism, they could inflict bias from sub-
tle advertising. Multiple papers from one set of data skew 
any future metanalyses on efficacy and hence generate 
uncertainty for scientists, clinical staff and policy makers 
[66].  Furthermore, Figs. 3 and 4 highlight the geographi-
cal relationships between the country of publication and 
home location of industry supplying the technology; this 
may well be obvious, but could add bias by encouraging 
similar studies from one or two countries dominating the 
literature.

Data on costs
Very few of the studies in this review offered tangible 
data on costs. There was no mention of any resources 
required or cost savings for 24 of 43 (56%) studies, with 8 
(19%) giving brief mention of the importance of cost ben-
efit without specific data [25–27, 33, 42, 45, 53, 57].  Ten 
(23%) studies offered incomplete costings, mostly based 
on potential savings from cases averted but lacking a bal-
ance against costs of the technology used [20, 22, 35–37, 
41, 44, 47–49].  There was just one study (2%) that pro-
vided a complete breakdown of costs incurred alongside 
costs saved from cases of C.difficile [31].  It is not possible 
to compare the costs of an outbreak or HAI against over-
all costs of devices, maintenance, technical needs and 
implementation without robust data on expenses; health-
care managers need to know the full range of cost bene-
fits when considering all options for infection prevention.

Statistical aberrations
Comments on statistical findings are shown in Table  1. 
The most important finding for non-outbreak studies 
was use of aggregated data that leads to the conclusion 
that the author wishes  to report. This is called Simpson’s 
paradox, where a trend appears to be positive when the 
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data is aggregated but negative when it is disaggregated 
(when examining individual groups or data collections). 
Several studies amalgamated selected outcomes together 
in order to achieve statistical significance  [21, 22, 26, 29, 
30, 34, 35, 39, 43, 47]. This clearly skews reporting and 
future conclusions from metanalyses.

There was also selective reporting, in that some 
pathogen rates were monitored but no outcome data 
was offered. Pegues et  al. did not provide any VRE 
data despite using UV devices for VRE patients; Mori-
kane et al. only measured total ACCs and not MRSA or 
MDRAB from environmental sampling, despite measur-
ing MRSA and MDRAB HAI rates [17, 31].

Several papers presented statistical analysis which 
were either underpowered  [27] or were performed on 
small numbers of patients [17, 23, 26, 29, 38]; two papers 
openly acknowledged statistical limitations [24, 40].

Discussion
Design anomalies
Most of the studies in this review relied upon histori-
cal controls or comparison between clinical units with 
different patient population mixes. A before-and-after 
or one-size-fits-all design are not sufficiently reliable to 
present robust evidence for interventions aimed at con-
trolling HAI [1, 12].  There were also many confounding 
practices, some of which were mentioned, or actively 
controlled and even discussed, but there were probably 
many more that were ignored and indeed, impossible to 
predict. The BETR study, in particular, attempted to con-
trol several potential confounders but failed to deliver 
incontrovertible results, which might have encouraged a 
plethora of linked publications  [21, 24, 30, 63–65]. These 
were, perhaps, an attempt to justify implementation of a 
complex and no doubt costly sponsored study but despite 
controls and randomisation, adding UV to routine disin-
fection had little clinical impact, except possibly for VRE 
acquisition. An accompanying editorial emphasised the 
need for multimodal strategies for preventing HAI, par-
ticularly antimicrobial stewardship, since enhanced dis-
infection is only one piece of the puzzle [13].  Universal 
success in controlling healthcare pathogens with auto-
mated decontamination equipment is not necessarily 
guaranteed.

Another study questioned the lower-than-anticipated 
effectiveness of UV devices in eradicating C. difficile [50].  
Since there was only < 50% removal of DAZO fluorescent 
gel during the mid-part of this study, it was thought that 
the cleaners had assumed superlative killing from the 
devices and relaxed their cleaning vigilance. Certainly, 
these devices are less effective at killing C. difficile spores 
in shaded areas. There was, however, an immediate and 
dramatic reduction of culture positive rooms during 

phase 3 of the study. Declining C. difficile from sampled 
surfaces was attributed not to the UV devices, but to the 
creation of a 3-person cleaning team, with daily disinfec-
tion of high risk sites using bleach, observed monitoring 
and supervisory sign off by the lead housekeeper [50].

Comparisons between traditional cleaning and use 
of automated devices
There have been comparisons between traditional clean-
ing, with or without disinfectants, and decontamination 
using automated devices. Manual cleaning with bleach 
has been compared against several different disinfection 
methods, including H202, for terminal cleaning of hos-
pital rooms contaminated with C. difficile spores [67].  
Products were ranked according to log10 reductions in 
colony count from contamination to disinfection. While 
the most effective products were hydrogen peroxide, 
bleach (1000 ppm chlorine-releasing agent) and peracetic 
acid wipes, it was concluded that cheaper traditional 
methods using bleach were just as effective as modern 
systems. Comparative studies directly comparing disin-
fection modalities and cost benefits are limited [3, 67].

At least five studies compared routine terminal disin-
fection with UV devices [68–72].  Penno et al. described 
the effectiveness of a UV-C emitter in 22 hospital dis-
charge rooms in a tertiary care academic hospital and 
compared it against terminal disinfection [72].  Using a 
cleanliness standard of < 5  cfu/cm2 for selected hand-
touch sites, there were no differences between observed 
routine disinfection and use of UV-C. Previous stud-
ies have shown that non-covert observation of clean-
ers usually improves housekeeper disinfection [60, 61].  
It is likely that carefully constructed standard operat-
ing procedures for cleaning staff, along with sufficient 
time, supervision and monitoring, represents the most 
cost effective strategy for protecting patients from HAI. 
Supervisors should tailor job requirements against staff-
ing resources and cleaners should be supported, trained 
and adequately renumerated [2].

While patient and staff perceptions toward decon-
tamination devices tend to be quite positive, the paucity 
of evidence for cost–benefit in this review challenges 
healthcare economists to recommend such technology 
for routine use [73]. This is not just because the devices 
are expensive. The equipment can generally only be used 
after the patient’s discharge because patients and staff 
must vacate the room. However, near-patient sites con-
stitute the highest risk as pathogen reservoirs and these 
need cleaning every day. [2] For ‘long stay’ patients, 
manual cleaning is the only option unless the patients 
are moved out of their rooms on a daily basis. This 
means that automated technology for room disinfection 
can only supplement, not replace, daily cleaning, which 
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essentially means retention, rather than replacement, of 
the domestic workforce [74]. Thus, there is little oppor-
tunity for managers to off-set labour savings following 
device purchase, particularly when non-manual devices 
are unable to dispose of rubbish or deal with visible soil 
[11].

Collateral damage
There are additional issues to consider for these devices. 
Despite initial eradication of surface flora in exposed 
areas, we know that surfaces are rapidly recolonised by 
environmental organisms within hours, including patho-
gens [75]. Secondly, the resources required to install, run 
and maintain these devices are considerable, even for 
hospitals in developed countries [14]. Low income coun-
tries might struggle to afford their use on a regular basis. 
Thirdly, the decontamination effect is not uniform, given 
that H202 cannot penetrate linen and soft furnishings 
and UV misses shaded areas. Neither product delivers 
expected outcome without first removing surface soil [11, 
76].

There are further concerns over the long term impact 
of these devices, particularly if used on general wards 
rather than specialist units or when there is less risk of 
healthcare pathogen transmission. In common with all 
powerful disinfectants, they damage the environment 
in ways that we cannot always see. Both H202 and UV 
are toxic to people, pets and plants.  [11] Adverse effects 
include the formation of high concentrations of hydroxyl 
and chlorine radicals, which encourage harmful reac-
tion products when exposed to other chemicals found in 
indoor air [77]. Microbes themselves may survive nox-
ious emissions from UV and H202 devices, which may 
be linked with emerging tolerance, resistance and cross-
resistance among environmental pathogens [78–82]. 
For example, insufficient H202 would, as with bleach, 
activate microbial ‘SOS’ mechanisms, which encourage 
formation of new, or re-emergence of dormant, survival 
mechanisms. These facilitate DNA transfer to neighbour-
ing organisms in a veritable shower of plasmid (and other 
genetic) exchanges coding for resistance to environmen-
tal assault [83].

UV light can cause bacterial mutations from a dis-
tance [81]. Laboratory trials of UV‐A and UV‐B expo-
sure highlight the ability of microbial communities to 
enhance their radiation resistance over time if they are 
insufficiently exposed [84]. This suggests that resistance 
to UV‐C is highly likely without contained use and sur-
veillance. Microbial communities adapt, reassemble, and 
persist, and recent theory in microbial ecology suggests 
that more gentle manipulation of the healthcare surface 
microbiome may be more sustainable than perpetual 
attempts at total removal [11, 82].

There is additional suspicion that introducing enhanced 
use of powerful disinfectants can release viable pathogens 
enmeshed in hard surface biofilm [85]. These organisms 
have been previously captured in microscopic crevices 
and their release reflects or even stimulates re-emergence 
of a previous outbreak [86, 87]. The biofilm lifestyles of 
microorganisms present a high risk for horizontal gene 
transfer, with transmission of antibiotic resistance and 
future recurrence [88]. Given these findings, routine use 
of microbiocidal products, including H202 and UV light, 
should be challenged [89].

Universal standards and regulation
It has already been mentioned that there is no regula-
tion of automated decontamination devices [79]. Chemi-
cal disinfectants used in the UK and Europe undergo 
stringent regulation by the European Chemicals Agency 
(ECHA) and by the  Environmental Protection Agency 
(EPA) in the USA. Registration of a disinfectant against a 
given pathogen requires proof of efficacy using standard-
ized test methods. Decontamination devices have not yet 
been regulated and consequently companies have engi-
neered several different methods to demonstrate efficacy. 
This is less of a problem for hydrogen peroxide, because 
it has already been tested as a liquid disinfectant, albeit 
in different formulations to device-generated aerosol or 
vapour. UV technologies have not been standardized and 
this has created concern over in-use variations that have 
a substantial impact on measuring pathogen reduction, 
let alone any other effects. Factors such as shadowing; 
distance from UV source; targeted surface area; carrier 
orientation; and presence and type of organic material all 
affect the overall efficacy of UV devices [79, 90].  If these 
devices become commonplace for universal healthcare, 
they should undergo standardized testing to receive reg-
istration against different pathogens. This would provide 
consumers with a modicum of assurance that products 
are effective as well as encourage urgently needed cost–
benefit evaluation. This is clearly in the interests of busi-
ness and industry as well as healthcare.

Conclusion
It was felt timely to independently review all available 
studies reporting an effect on HAI rates attributed to 
automated devices dispelling UV or H202. This sys-
tematic review is not just an assimilation of the clinical 
effects from these devices but a critical expose of the 
methods and pitfalls uncovered in the majority of stud-
ies reporting use. Device technologies offer a solution to 
just one aspect of infection prevention; this is because 
antimicrobial stewardship, isolation, hand hygiene and 
screening have already earned their place as useful strat-
egies to control infection and all have been shown to 
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reduce HAI rates  [13, 91]. Doubtless there are yet more 
activities that can be added. It may be tempting to engage 
with modern technology when confronting HAI risks 
from environmental contamination, especially during an 
outbreak, but the findings in this review cannot support 
automated devices as a reliable alternative to manual and 
basic housekeeping practices. Current cleaning advice 
for occupied bed spaces, ‘One wipe; one site; and one 
direction’, with detergent and water, is easy, cheap and 
effective; and will not upset the surface ecology or cre-
ate a futuristic ‘superbug’ [82, 92]. We should continue to 
support traditional infection control practices, including 
cleaning, without undue reliance on novel technology at 
the present time. [18].
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