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Abstract 

Background:  Pediatric bacterial meningitis (PBM) remains a devastating disease that causes substantial neurological 
morbidity and mortality worldwide. However, there are few large-scale studies on the pathogens causing PBM and 
their antimicrobial resistance (AMR) patterns in China. The present multicenter survey summarized the features of the 
etiological agents of PBM and characterized their AMR patterns.

Methods:  Patients diagnosed with PBM were enrolled retrospectively at 13 children’s hospitals in China from 2016 to 
2018 and were screened based on a review of cerebrospinal fluid (CSF) microbiology results. Demographic character-
istics, the causative organisms and their AMR patterns were systematically analyzed.

Results:  Overall, 1193 CSF bacterial isolates from 1142 patients with PBM were obtained. The three leading patho-
gens causing PBM were Staphylococcus epidermidis (16.5%), Escherichia coli (12.4%) and Streptococcus pneumoniae 
(10.6%). In infants under 3 months of age, the top 3 pathogens were E. coli (116/523; 22.2%), Enterococcus faecium 
(75/523; 14.3%), and S. epidermidis (57/523; 10.9%). However, in children more than 3 months of age, the top 3 
pathogens were S. epidermidis (140/670; 20.9%), S. pneumoniae (117/670; 17.5%), and Staphylococcus hominis (57/670; 
8.5%). More than 93.0% of E. coli isolates were sensitive to cefoxitin, piperacillin/tazobactam, cefoperazone/sulbactam, 
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Background
Pediatric bacterial meningitis (PBM) is a devastating 
infectious disease that causes substantial neurological 
morbidity and mortality worldwide [1]. Studies have 
estimated that the annual incidence of PBM in China 
fluctuated between 7.0 and 22.3 cases per 100 000 chil-
dren under 5  years old [2]. The case fatality rate was 
estimated to be 3.0–10.6% [3–5], and survivors had rel-
atively high percentages of neurological complications 
[3, 5, 6]. Therefore, early diagnosis and prompt use of 
rational antimicrobial therapies are vital to alleviate the 
burdens of this disease.

The options of empirical antimicrobial agents in clini-
cal practice mainly depend on the causative organisms 
and their antimicrobial resistance (AMR) patterns. 
Immediate and effective antibiotic use for pediat-
ric populations with PBM is relevant for achieving a 
favorable outcome [7]. However, the spectrum of path-
ogens causing PBM varies in different reports [8–11]. 
Data from England and Wales during 2004–2011 indi-
cated that the predominant organisms responsible for 
PBM were Neisseria meningitidis (N. meningitidis), 
Streptococcus pneumoniae (S. pneumoniae), and Staph-
ylococcus aureus (S. aureus) [8]. Meningitis surveillance 
during 2011–2016 in African regions demonstrated 
that the two leading causative agents identified were 
S. pneumoniae and Haemophilus influenzae (H. influ-
enzae) [9, 10]. One study from the southwestern prov-
ince of China reported that approximately 46.0% of 
PBM cases were caused by Escherichia coli (E. coli) and 
S. pneumoniae from 2012 to 2015 [11]. The etiology of 
PBM varies greatly based on several factors, including 
geography, time, and patient age [8, 11–13]. In addition 
to their isolation rates, their AMR patterns vary sub-
stantially [14]. Therefore, timely analysis and reporting 
of the causative agents of PBM and the AMR profiles 
play vital roles in helping physicians choose the proper 
empirical therapy.

To the best of our knowledge, there are limited large-
scale studies examining the pathogens of PBM in China. 
Data on the susceptibility patterns of prevailing causa-
tive bacteria in pediatric populations are also lacking in 
China. To gain a better understanding of evidence-based 
empirical antibiotic treatment and infection control for 
children with PBM, the present multicenter retrospective 
survey investigated the features of the etiological agents 
responsible for PBM and characterized their AMR pat-
terns in China from 2016 to 2018.

Methods
Study design and participating hospitals
This national multicenter survey was based on the diag-
nosis of bacterial meningitis (BM) by cerebrospinal fluid 
(CSF) culture and was performed retrospectively in 13 
children’s hospitals (11 tertiary hospitals and 2 second-
ary hospitals) in China from January 2016 to December 
2018. Thirteen hospitals in 12 provinces provided data 
for our research. Most of these hospitals were the larg-
est local medical institutions that provided treatment, 
health consultation or other clinical services for children 
and/or women. The geographic locations of the par-
ticipating hospitals are shown in Fig. 1. All participating 
hospitals have adequate facilities and qualified special-
ists to conduct bacterial culture and assess antimicrobial 
susceptibility.

Study population
Children (< 18  years of age) with BM were enrolled at 
each hospital based on the review of CSF microbiology 
results. Patients with clinical manifestations and a posi-
tive CSF culture were diagnosed with confirmed BM on 
the basis of the World Health Organization (WHO) case 
definition [15]. All eligible patients received antibiotic 
therapies against target CSF bacterial isolates according 
to the attending physician’s comprehensive assessment 
[16]. The exclusion criteria were tuberculous meningitis 

amikacin and carbapenems, and the resistance rates to ceftriaxone, cefotaxime and ceftazidime were 49.4%, 49.2% 
and 26.4%, respectively. From 2016 to 2018, the proportion of methicillin-resistant coagulase-negative Staphylococ-
cus isolates (MRCoNS) declined from 80.5 to 72.3%, and the frequency of penicillin-resistant S. pneumoniae isolates 
increased from 75.0 to 87.5%. The proportion of extended-spectrum β-lactamase (ESBL)-producing E. coli fluctuated 
between 44.4 and 49.2%, and the detection rate of ESBL production in Klebsiella pneumoniae ranged from 55.6 to 
88.9%. The resistance of E. coli strains to carbapenems was 5.0%, but the overall prevalence of carbapenem-resistant K. 
pneumoniae (CRKP) was high (54.5%).

Conclusions:  S. epidermidis, E. coli and S. pneumoniae were the predominant pathogens causing PBM in Chinese 
patients. The distribution of PBM causative organisms varied by age. The resistance of CoNS to methicillin and the 
high incidence of ESBL production among E. coli and K. pneumoniae isolates were concerning. CRKP poses a critical 
challenge for the treatment of PBM.

Keywords:  Bacterial meningitis, Pediatric, Bacterial pathogens, Antimicrobial resistance
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and fungal meningitis. Duplicate isolates from the same 
child during hospitalization were not included in the pre-
sent research. Locally trained researchers collected the 
data of the enrolled patients from the participating hos-
pital computer data systems, which included the date of 
sample collection, type of specimen, hospital ward, basic 
information on patient demographics, causative organ-
isms, antimicrobial susceptibility testing results, and final 
diagnosis.

Microbiological methods
All participating hospitals strictly complied with the 
standard operating procedures for CSF collection and 
culture. According to the Clinical Laboratory Standards 
Institute (CLSI) guidelines, local experienced laboratory 
members of each hospital independently completed the 
isolation and identification of isolates, and antibiotic sus-
ceptibility testing was performed using semiautomated or 
automated systems. The CLSI guideline was used as the 
standard for the interpretation of the antimicrobial sus-
ceptibility test results [17]. Isolates showing intermediate 

resistance or resistance to the tested antimicrobial agents 
were categorized as resistant. The resistance of isolates 
to carbapenems referred to nonsusceptibility to one or 
more of the three carbapenems [ertapenem (ETP), imipe-
nem (IMP) and meropenem (MEM)].

Statistical analysis
We calculated the counts and percentages for categorical 
variables and analyzed them using the chi-squared test. 
Continuous variables are presented as medians with the 
interquartile range. All of the data were collected, stored 
and sorted in a Microsoft Excel workbook. We per-
formed data analyses using SPSS 22.0 (IBM Corp., New 
York, NY, USA) software.

Results
Demographic characteristics
From January 1, 2016 to December 3, 2018, 1161 patients 
(< 18 years old) with PBM were enrolled for screening. In 
accordance with the exclusion criteria, 1142 confirmed 
PBM patients were ultimately included. Less than half 

Fig. 1  Locations of participating hospitals (red dots) in this study
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of the enrolled patients were boys (501/1142), and the 
median age was 3  months (range: 0  days to 17  years, 
7  months). Up to 65.9% of patients were < 1  year old, 
44.9% were < 3  months old, and a sharp decline in the 
percentage was observed with increasing age.

Pathogen composition
A total of 1193 bacterial pathogens were obtained from 
1142 patients. Gram-positive organisms accounted 
for nearly 69.6% (830/1193) of the isolates, and 30.4% 
(363/1193) were gram-negative organisms. The three 
leading pathogens causing PBM were Staphylococcus 
epidermidis (S. epidermidis) (197/1193; 16.5%), E. coli 
(148/1193; 12.4%) and S. pneumoniae (127/1193; 10.6%), 
followed by Enterococcus faecium (E. faecium) (115/1193; 
9.6%), Staphylococcus hominis (S. hominis) (85/1193; 
7.1%), group B Streptococcus (GBS) (59/1193; 4.9%), 
Staphylococcus haemolyticus (S. haemolyticus) (42/1193; 
3.5%), Klebsiella pneumoniae (K. pneumoniae) (40/1193; 
3.4%), S. aureus (39/1193; 3.3%), and Acinetobacter bau-
mannii (A. baumannii) (27/1193; 2.3%) (Table 1).

Distribution of major PBM pathogens according to age 
and clinical ward
The spectrum of pathogens causing PBM was highly 
variable in children of different ages (Fig.  2). In infants 
under 3 months of age, the top 3 pathogens were E. coli 
(116/523; 22.2%), E. faecium (75/523; 14.3%), and S. epi-
dermidis (57/523; 10.9%). However, in children more than 
3 months of age, the top 3 pathogens were S. epidermidis 

(140/670; 20.9%), S. pneumoniae (117/670; 17.5%), and 
S. hominis (57/670; 8.5%). As shown in Fig. 2, the other 
prevalent bacteria also varied by age group. Children less 
than 1 year old had the greatest abundance of pathogenic 
species, the leading pathogen among which was E. coli 
(134/776; 17.3%), followed by S. epidermidis (105/776; 
13.5%) and E. faecium (88/776; 11.3%).

In terms of clinical ward distribution, these common 
pathogens were detected in the pediatric intensive care 
unit (PICU), surgical department and other departments 
(Additional file 1: Figure S1). S. epidermidis was detected 
more commonly in the surgical department (31.1%) than 
in the PICU (10.8%) and other departments (13.9%) 
(P < 0.001). However, E. coli, S. pneumoniae, E. faecium, 
and GBS were detected more frequently in the PICU and 
in the other departments than in the surgical department 
(all P < 0.05).

AMR patterns of the major gram‑positive bacteria
As shown in Table 2, the three main species of coagulase-
negative Staphylococcus (CoNS), namely, S. epidermidis, 
S. hominis and S. haemolyticus, were isolated from CSF 
cultures. The resistances of these isolates to penicil-
lin (PEN) and erythromycin (ERY) were greater than 
71.0%. Resistance to methicillin depended on oxacillin 
(OXA) resistance. Therefore, the overall detection rate of 
the methicillin-resistant CoNS (MRCoNS) isolates was 
approximately 80.0% and declined from 80.5% in 2016 
to 72.3% in 2018 (Fig. 3). All of these three species were 
susceptible to linezolid (LNZ) (100%) and vancomycin 

Table 1  Common bacterial pathogens isolated from PBM patients in China, 2016–2018

PBM, pediatric bacterial meningitis

Pathogen 2016
N (%)

2017
N (%)

2018
N (%)

Total
N (%)

Rank

Gram-positive organisms

 Staphylococcus epidermidis 72 (17.4) 75 (16.7) 50 (15.1) 197 (16.5) 1

 Streptococcus pneumoniae 41 (9.9) 44 (9.8) 42 (12.7) 127 (10.6) 3

 Enterococcus faecium 46 (11.1) 32 (7.1) 37 (11.1) 115 (9.6) 4

 Staphylococcus hominis 15 (3.6) 39 (8.7) 31 (9.3) 85 (7.1) 5

 Group B Streptococcus 20 (4.8) 22 (4.9) 17 (5.1) 59 (4.9) 6

 Staphylococcus haemolyticus 20 (4.8) 11 (2.5) 11 (3.3) 42 (3.5) 7

 Staphylococcus aureus 16 (3.9) 13 (2.9) 10 (3.0) 39 (3.3) 9

 Other gram-positive organisms 56 (13.6) 72 (16.1) 40 (12.1) 168 (14.1)

Gram-negative organisms

 Escherichia coli 49 (11.9) 64 (14.3) 35 (10.5) 148 (12.4) 2

 Klebsiella pneumoniae 13 (3.1) 10 (2.2) 17 (5.1) 40 (3.4) 8

 Acinetobacter baumannii 10 (2.4) 12 (2.7) 5 (1.5) 27 (2.3) 10

 Pseudomonas aeruginosa 6 (1.5) 12 (2.7) 4 (1.2) 22 (1.8) 11

 Other gram-negative organisms 49 (11.9) 42 (9.4) 33 (9.9) 124 (10.4)

Total 413 (34.6) 448 (37.6) 332 (27.8) 1193 (100)
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(VAN) (100%). Over 65.0% of the isolates, except S. 
haemolyticus, were also susceptible to aminoglycosides, 
fluoroquinolones, co-trimoxazole (SXT), rifampin (RIF) 
and tetracycline (TET). For S. pneumoniae isolates, 

resistance to fluoroquinolones, LNZ, or VAN was not 
detected in this study. The susceptibility to amoxicillin 
(AMX), cefotaxime (CTX) and ceftriaxone (CRO) was 
74.8%, 59.0%, and 50.0%, respectively. However, over 

Fig. 2  Distribution of major PBM pathogens by age in China, 2016–2018. PBM, pediatric bacterial meningitis; Sep, Staphylococcus epidermidis; 
Eco, Escherichia coli; Spn, Streptococcus pneumoniae; Efa, Enterococcus faecium; Sho, Staphylococcus hominis; GBS, group B Streptococcus; Sha, 
Staphylococcus haemolyticus; Kpn, Klebsiella pneumoniae; SA, Staphylococcus aureus 

Table 2  Resistance rates (%) of major gram-positive bacteria of PBM patients in China, 2016–2018

PBM, pediatric bacterial meningitis; Sep, Staphylococcus epidermidis; Sho, Staphylococcus hominis; Sha, Staphylococcus haemolyticus; Spn, Streptococcus pneumoniae; 
Efa, Enterococcus faecium; GBS, group B Streptococcus; SA, Staphylococcus aureus

A/B (%), number resistant/number tested (percentage resistant)

A dash (–) indicates that antibiotics were not tested against the isolated pathogens

Antimicrobial agent Sep
A/B (%)

Sho
A/B (%)

Sha
A/B (%)

Spn
A/B (%)

Efa
A/B (%)

GBS
A/B (%)

SA
A/B (%)

Oxacillin 132/165 (80.0) 51/67 (76.1) 31/36 (86.1) – – – 9/31 (29.0)

Penicillin G 143/159 (89.9) 58/66 (87.9) 28/33 (84.8) 92/116 (82.8) 90/92 (97.8) 1/58 (1.7) 1/29 (96.6)

Amoxicillin – – – 26/103 (25.2) – – –

Ampicillin – – – – 106/111 (95.5) 1/27 (3.7) –

Cefotaxime – – – 48/117 (41.0) – – –

Ceftriaxone – – – 17/34 (50.0) – – –

Erythromycin 134/160 (83.8) 50/70 (71.4) 35/36 (97.2) 112/116 (96.6) 107/109 (98.2) 28/31 (90.3) 22/31 (71.0)

Clindamycin – – – 60/65 (92.3) – 45/49 (91.8) 9/25 (36.0)

Gentamicin 44/163 (27.0) 14/69 (20.3) 23/36 (63.9) – – – 2/31 (6.5)

Ciprofloxacin 46/165 (27.9) 15/69 (21.7) 30/36 (83.3) – 102/110 (92.7) – 1/32 (3.2)

Moxifloxacin 29/94 (30.9) 13/55 (23.6) 10/17 (58.8) 0/78 (0) – – 0/19 (0)

Levofloxacin 30/98 (30.6) 8/58 (13.8) 10/19 (52.6) 0/118(0) 58/65 (89.2) 28/59 (47.5) 2/21 (9.5)

Rifampin 27/163 (16.6) 8/66 (12.1) 12/35 (34.3) – – – 1/31 (3.2)

Nitrofurantoin – – – – 66/105 (62.9) – 0/30 (0)

Co-trimoxazole 57/164 (34.8) 17/67 (25.4) 30/36 (83.3) 101/119 (84.9) – – 8/31 (25.8)

Tetracycline 45/165 (27.3) 19/68 (27.9) 14/37 (37.8) 107/117 (91.5) 83/111 (74.8) 33/48 (68.8) 7/32 (21.9)

Vancomycin 0/164 (0) 0/71 (0) 0/37 (0) 0/120 (0) 1/111 (0.9) 0/50 (0) 0/31 (0)

Linezolid 0/192 (0) 0/82 (0) 0/41 (0) 0/94 (0) 5/114 (4.4) 0/56 (0) 0/38 (0)

Tigecycline – – – – 0/63 (0) – –
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84.0% of the S. pneumoniae isolates were resistant to ERY, 
clindamycin (CLI), SXT, and TET. The resistance of S. 
pneumoniae isolates to PEN was 82.8%, increasing from 
75.0% in 2016 to 87.5% in 2018 (Fig. 3). More than 95.0% 
of E. faecium isolates showed susceptibility to VAN, LNZ, 
and tigecycline (TGC), but the resistance rates to other 
antibacterial drugs were over 62.9%.

AMR patterns of the major gram‑negative bacteria
As shown in Table 3, more than 93.0% of the E. coli iso-
lates were sensitive to cefoxitin (FOX), piperacillin/tazo-
bactam (TZP), cefoperazone/sulbactam (CSL), amikacin 
(AMK) and carbapenems, and the resistance rates for 
ampicillin (AMP) and piperacillin (PIP) exceeded 82.0%. 
The sensitivities of E. coli to third-generation cephalo-
sporins, aztreonam and fluoroquinolones were 47.6–
73.6%, 65.3%, 44.3–46.4%, respectively. Moreover, the 
detection rate of ESBL-producing E. coli was stable and 
fluctuated between 44.4 and 49.2% in 2016–2018. The 
proportion of carbapenem-resistant E. coli (CRECO) iso-
lates was 5.0%, increasing from 2.2% in 2016 to 9.1% in 
2018 (Fig. 3). K. pneumoniae isolates exhibited suscepti-
bility rates greater than 50.0% to aminoglycosides, fluo-
roquinolones, TET, SXT, IMP, and ETP, but the resistance 
rates to other antibiotics were greater than 50.0%. The 
proportions of ESBL-producing K. pneumoniae and car-
bapenem-resistant K. pneumoniae (CRKP) were 74.3% 
and 54.5%, respectively. The data from 2016 to 2018 

demonstrated that ESBL-producing K. pneumoniae and 
CRKP showed an upward trend (Fig. 3).

For A. baumannii and P. aeruginosa isolates, the sus-
ceptibility rates of A. baumannii isolates to amino-
glycosides and fluoroquinolones exceeded 55.0%. The 
susceptibility of isolates to cephalosporins and carbapen-
ems ranged from 37.5 to 66.7% and 45.5 to 68.4%, respec-
tively. The susceptibility rates of P. aeruginosa isolates to 
PIP, third-generation cephalosporins, TZP, aminoglyco-
sides, fluoroquinolones, and carbapenems were greater 
than 60.0%, but the resistance of isolates to AMP and 
ampicillin/sulbactam (SAM) exceeded 92.0%.

Discussion
PBM remains a serious threat to children’s health world-
wide despite significant progress in the diagnosis and 
treatment of the disease. In the present study, S. epider-
midis (16.5%) was the leading causative pathogen, fol-
lowed by E. coli (12.4%) and S. pneumoniae (10.6%). Our 
findings differed from various reports worldwide, includ-
ing reports from Britain [8], Africa [9, 10] and the USA 
[18], which showed that N. meningitidis, S. pneumoniae 
and H. influenzae were the predominant causative agents 
of PBM. However, the results were similar to those of a 
report from Southwest China [11]. The reasons for the 
discrepancies between studies are most likely differ-
ences in socioeconomic status and environmental factors 
among these regions. Therefore, timely summary and 

Fig. 3  Trends of common multidrug resistant strains isolated from PBM patients in China, 2016–2018. PBM, pediatric bacterial meningitis; MRCoNS, 
methicillin-resistant coagulase-negative Staphylococcus; ESBL, extended-spectrum β-lactamase; CRECO, carbapenem-resistant Escherichia coli; CRKP, 
carbapenem-resistant Klebsiella pneumoniae; PRSP, penicillin-resistant Streptococcus pneumoniae; VREFM, vancomycin-resistant Enterococcus faecium; 
MRSA, methicillin-resistant Staphylococcus aureus 
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reporting of the features of the etiological agents of local 
PBM are urgently needed.

The distribution of PBM pathogens is highly variable 
in children of different ages [11–13]. We noticed that in 
infants aged under 3 months, the top 3 pathogens were 
E. coli (22.2%), E. faecium (14.3%), and S. epidermidis 
(10.9%). This result was similar to previous Chinese 
reports from Yunnan [11] and Shanghai [19]. However, it 
was not in accordance with several studies from the USA 
[20] and the UK and Ireland [21], which showed that 
GBS, E. coli and S. aureus were the predominant patho-
gens causing PBM in infants younger than 3 months. We 
also observed that in children older than 3 months of age, 
the predominant organisms causing PBM were S. epi-
dermidis (20.9%), S. pneumoniae (17.5%) and S. hominis 
(8.5%). This finding was consistent with a previous study 
conducted in mainland China [11] but differed from data 
from England and Wales [8]. In addition, we also found 
that children younger than 1  year old had the highest 
abundance of pathogenic species, the leading pathogen 
among which was E. coli, followed by S. epidermidis and 

E. faecium. Therefore, the options of empiric antimicro-
bial agents for patients with PBM should be stratified by 
age to cover the most likely organisms.

The resistance rates of CoNS isolates to PEN and ERY 
were greater than 71.0% in the present study, which was 
similar to previous studies conducted in Brazil (100% 
and 86.2%, respectively) [22] and Beijing, China (94.9% 
and 92.4%, respectively) [23]. The overall resistance of 
the CoNS species to methicillin was nearly 80.0%, and 
the proportion of MRCoNS isolates declined slightly 
over the 3  years but remained very high (Fig.  3). These 
surveillance data were in line with a report from Beijing, 
China (93.6%) [23] but higher than the values reported 
in eastern Nepal (57.7%) [24] and Ethiopia (37.0%) [25]. 
Consistent with most previous studies [22, 24, 25], there 
were no LNZ- or VAN-resistant isolates found in our 
study. VAN remained the best option for the treatment 
of MRCoNS infections in patients with PBM. However, 
data from the UK and Ireland during 2013–2015 dem-
onstrated that 0.2% of CoNS isolates were resistant to 
methicillin [26]. VAN-resistant CoNS exists in the clinic. 

Table 3  Resistance rates (%) of major gram-negative bacteria of PBM patients in China, 2016–2018

PBM, pediatric bacterial meningitis; Eco, Escherichia coli; Kpn, Klebsiella pneumoniae; Aba, Acinetobacter baumannii; Pae, Pseudomonas aeruginosa

A/B (%), number resistant/number tested (percentage resistant)

A dash (–) indicates that antibiotics were not tested against the isolated pathogens

Antimicrobial agent Eco
A/B (%)

Kpn
A/B (%)

Aba
A/B (%)

Pae
A/B (%)

Ampicillin 105/125 (84.0) 25/26 (96.2) 14/18 (77.8) 12/13 (92.3)

Piperacillin 56/68 (82.4) 11/14 (78.6) 3/5 (60.0) 5/13 (38.5)

Cefazolin 52/104 (50.0) 18/23 (78.3) – –

Cefuroxime 11/21 (52.4) 4/8 (50.0) – –

Cefoxitin 0/30 (0) 5/8 (62.5) – –

Ceftriaxone 44/89 (49.4) 10/15 (66.7) 8/15 (53.3) –

Cefotaxime 30/61 (49.2) 14/20 (70.0) 5/8 (62.5) –

Ceftazidime 38/140 (26.4) 20/32 (62.5) 8/21 (38.1) 5/16 (31.2)

Cefepime 45/140 (32.1) 17/32 (53.1) 7/21 (33.3) 3/17 (17.6)

Amoxicillin/clavulanic acid – – 8/13 (61.5) –

Ampicillin/Sulbactam 58/102 (56.9) 20/26 (76.9) 5/15 (33.3) 7/7 (100)

Piperacillin/tazobactam 3/122 (2.5) 20/30 (66.7) 5/12 (41.7) 4/10 (40.0)

Cefoperazone/sulbactam 1/17 (5.9) – – –

Tobramycin 23/56 (41.1) 2/8 (25.0) 1/10 (10.0) ¼ (25.0)

Gentamicin 49/127 (38.6) 13/30 (43.3) 5/19 (41.7) 2/13 (15.4)

Amikacin 0/142 (0) 11/31 (35.5) 2/16 (12.5) 1/16 (6.2)

Ciprofloxacin 73/131 (55.7) 12/29 (41.4) 5/20 (25.0) 1/13 (7.7)

Levofloxacin 74/138 (53.6) 12/32 (37.5) 5/21 (23.8) 3/16 (18.8)

Aztreonam 43/124 (34.7) 17/26 (65.4) – 2/4 (50.0)

Tetracycline 60/76 (78.9) 9/30 (30.0) 5/9 (55.6) –

Co-trimoxazole 97/141 (68.8) 5/34 (14.7) 13/22 (59.1) –

Meropenem 6/88 (6.8) 16/25 (64.0) 6/11 (54.5) 2/13 (15.4)

Ertapenem 0/79 (0) 1/12 (8.3) – –

Imipenem 4/140 (2.9) 5/22 (22.7) 6/19 (31.6) 6/16 (37.5)
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Although no VAN-resistant CoNS isolates were found in 
these surveillance data, the emerging resistance of CoNS 
isolates to VAN may be a serious concern in PBM.

The high resistance of E. coli and K. pneumoniae to 
antibiotics is of critical concern [27–31]. The resistance 
rates of E. coli to CRO (49.4%) and CTX (49.2%) in the 
present study were quite close to those in previous Chi-
nese studies [11, 13]. Our research also found that the 
proportion of ESBL-producing E. coli fluctuated between 
44.4 and 49.2% in 2016–2018, which was in line with 
the proportions reported in Pakistan (40.0%) [27] and 
East Africa (42.0%) [28] but higher than the proportion 
in the USA (ranging from 10.0 to 15.0%) [29]. Notably, 
the proportion of CRECO was 5.0%, and this increased 
from 2.2% in 2016 to 9.1% in 2018. Data from the CHI-
NET surveillance in 2005–2014 reported that IMP and 
MEM resistance rates of E. coli were approximately 1.0% 
and 2.2%, respectively [30]. A survey in the USA showed 
that the detected rates of CRECO increased from 2001 
to 2010 [31]. However, the incidence of ESBL production 
in K. pneumoniae isolates and the resistance rates of K. 
pneumoniae to cephalosporins, aminoglycosides and car-
bapenems were higher than those of the E. coli isolates in 
our research. The prevalence of CRKP was 54.5% during 
the 3 years of this study. Consistent with this result, there 
were distinct upward trends of CRKP rates in 5 of the 
24 participating countries in Europe from 2009 to 2012. 
Approximately 60.0% of K. pneumoniae isolates were 
resistant to carbapenems in Greece in 2012 [32]. Previous 
studies showed that carbapenem-resistant Enterobacte-
riaceae strains caused a mortality rate of approximately 
26.0–44.0% [33], prolonged hospitalization time and 
increased economic burdens on patients [34]. Carbapen-
ems were proposed as the optimal treatment for carbap-
enem-resistant Enterobacteriaceae infections. However, 
resistance to carbapenems has become an extreme chal-
lenge in the treatment of CRKP. Additional studies 
should focus on the mechanism of CRKP production in 
the future.

We also observed that the resistance rate of S. pneumo-
niae isolates to PEN was 82.8%, and the ratio increased 
from 75.0% in 2016 to 87.5% in 2018, which was lower 
than the values reported in Beijing (95.7%) [35] and 
Ethiopia (100%) [36] but was higher than the values from 
other studies, including those in Yunnan (31.2%) [11] and 
Iran (21.0%) [37]. S. pneumoniae had resistance rates of 
41.0% to CTX and 50.0% to CRO in the present study. A 
finding from Beijing showed that nearly 14.0% and 11.3% 
of S. pneumoniae isolates were resistant to CTX and 
CRO, respectively, from 2014 to 2016 [13]. Jiang et  al. 
[11] found that 16.7% of S. pneumoniae isolates were 
resistant to CRO in Yunnan during 2012–2015. The Ethi-
opian study indicated that the CTX and CRO resistance 

rates of S. pneumoniae isolates were 60.0% and 60.0%, 
respectively [36]. Various resistance levels were observed 
in different reports, and the high incidence of resistance 
in our study may be ascribed to the greater exposure to 
antibiotics in the clinic. Therefore, the use of antibiotics 
deserves serious consideration for the reduction in anti-
biotic resistance in China. Not surprisingly, there were 
no LNZ- or VAN-resistant S. pneumoniae isolates found 
in our study, which coincided with previous studies [11–
13, 36, 37].

The present study was the first large-scale study to 
summarize the features of the etiological agents and 
AMR profiles of PBM in China. However, several limita-
tions exist. First, due to the lack of patients’ detailed clini-
cal data, we were unable to distinguish community- and 
hospital-acquired PBM or assess the epidemiological dif-
ferences between them. We were also unable to identify a 
relationship between hospital-acquired PBM and patho-
gen distribution by clinical wards. Second, although all 
of the antimicrobial resistance results were interpreted 
based on the CLSI guideline, variations were inevitably 
found in the detection platforms, automated systems and 
technical skills of the participating hospitals, and these 
variations may have affected the results of the antimicro-
bial sensitivity tests to some degree.

Conclusions
The present study identified that S. epidermidis, E. coli 
and S. pneumoniae were the three leading bacterial 
pathogens associated with PBM in China from 2016 to 
2018. It also revealed that the distribution of common 
PBM causative organisms varied by age. The resistance 
of CoNS to methicillin and the high incidence of ESBL 
production in E. coli and K. pneumoniae were concern-
ing. CRKP poses a critical challenge for PBM treatment. 
Therefore, enhancing the surveillance and timely report-
ing of antibiotic resistance is urgently needed in China.
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