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Abstract 

Background:  The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of 
a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial patho‑
gens; however, few are evaluated for use in low- and middle-income countries.

Methods:  We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and 
routine culture testing.

Results:  We identified the carriage of the metallo-β-lactamase blaVIM-2 and blaIMP-18 alleles in Carbapenem-Resistant 
Pseudomonas aeruginosa infections among children in Costa Rica.

Conclusions:  The blaIMP-18 allele is not present in the most frequently used commercial tests; thus, it is possible that 
the circulation of this resistance gene may be underdiagnosed in Costa Rica.
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Background
The global increase of infections due to multidrug-resist-
ant bacteria remains a public health and sustainable 
development problem [1]. The global antimicrobial resist-
ance surveillance system (GLASS) encourages healthcare 
authorities to increase laboratory capacity. To improve 
surveillance and diagnostic stewardship, GLASS also 
recommends the implementation of rapid, accurate diag-
nostic testing for antibiotic resistance [2]. The methods 
for the detection of resistance mechanisms are diverse, 

ranging from phenotypic to more complex genotypic 
tests, and whole-genome sequencing (WGS). The con-
tinuous development of diagnostic tests in and for 
high-income countries makes them available for other 
countries at a good price. However, information on anti-
microbial resistance in low- and middle-income coun-
tries is scarce, as is the performance of these kits in 
different epidemiological contexts. Carbapenem-Resist-
ant Pseudomonas aeruginosa (CRPA) is frequently iso-
lated from healthcare-associated infections (HAI). The 
mechanisms of CRPA resistance can be driven by porin 
loss, efflux pump activity, or by horizontal gene trans-
fer encoded in plasmids [3]. In Costa Rica, the National 
Children’s Hospital is a tertiary referral hospital within 
the socialized medical care system. HAI assessment has 
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recently improved in this hospital with the implemen-
tation of a diagnostic stewardship program, which was 
established according to its needs and resources. To 
better understand CRPA circulation in Costa Rica and 
compare detection methods, we studied P. aeruginosa 
isolated from pediatric patients with HAI between late 
2018 and 2020 using conventional phenotypic methods, 
rapid molecular test, and WGS.

Methods
Samples from patients with suspected HAI were col-
lected and transported to the laboratory following the 
general specimen collection and transport techniques [4]. 
A total of 32 P. aeruginosa isolates were analyzed using 
all of the following methods: conventional phenotypic 
methods, molecular tests, and whole-genome sequenc-
ing. Identification and susceptibility to antimicrobials 
were performed by automated Vitek-2 Systems (BioMé-
rieux, Marcy-l’Étoile, France) using CLSI breakpoints for 
Carbapenems (MIC ≥ 8  µg/mL) [5]. Phenotypic studies 
included modified carbapenem inhibition test (mCIM) 
according to CLSI [5] and metallo-ß-lactamase (MBL) 
E-test (BioMérieux, Marcy-l’Étoile, France). Molecu-
lar analyses for detection of genes conferring resistance 
included Xpert Carba Test (Cepheid, Sunnyvale CA, 
USA) for detection of genes encoding carbapenemases 
KPC, VIM, IMP, NDM, OXA-48; AMR Flow-Chip 
hybridization (Master Diagnóstica, Granada, Spain) for 
detection of genes encoding extended-spectrum beta-
lactamases SHV, CTX-M; class A carbapenemases GES, 
SME, KPC, IMI; class B carbapenemases SIM, GIM, SPM, 
NDM, VIM, IMP and class D carbapenemases OXA23-
like, 24-like, 48-like, 51-like and 58-like; and detection 
of genes encoding carbapenemases IMP and VIM by 
Polimerase Chain Reaction (PCR) Laboratory-Devel-
oped Tests (LDT) using primers described elsewhere [6]. 
When required, DNA was extracted using MagNA Pure 
(Roche Diagnostics, Basel, Switzerland), quantified by 
Quantus (Promega, Madison WI, USA), and verified by 
Qiaxcell (QIAgen, Germantown MD, USA). The whole 
genome was prepared using the Nextera Flex library 
preparation standard protocol and paired-end fragment 
(151  bp) sequencing (MiSeq, Illumina Inc., San Diego 
CA, USA). A general pipeline for read quality (FastQC) 
[7], trimming (Trimmomatic) [8], genome assembly 
(Shovill) [9], genome annotation (Prokka) [10] and resist-
ance-gene finder (ABRicate) [11] was performed using 
Galaxy Community Hub [12].

Results
A total of 8 out of the 32 bacterial isolates identified as P. 
aeruginosa exhibited resistance to imipenem and mero-
penem by automated means. In all 8 strains, mCIM was 

positive, indicating carbapenemase activity. Furthermore, 
MBL E-test methods confirmed the carbapenem resist-
ance due to the presence of metallo-β-lactamase in all 
strains. The molecular methods classified all 8 strains in 
agreement with the observed phenotypic assays. How-
ever, GenXpert Carba RT-PCR, as well as the reverse-
hybridization assay showed positive results for blaVIM 
detection only. Conventional PCR using LDT detected 
both blaVIM and blaIMP genes. The analyses of resistance 
genes using the WGS data (ABRicate) [11] identified 
alleles blaVIM-2 and blaIMP-18. Taken together, 4 out of the 
8 strains exhibited both blaVIM-2 and blaIMP-18 alleles. The 
remaining 4 strains harbored only the blaVIM-2 gene.

Discussion
Carbapenems constitute one of the final lines of defense 
against resistant bacteria, particularly Gram-negative 
bacilli. CRPA is ranked as “critical priority” for research 
and development for new drugs and to implement anti-
microbial stewardship initiatives by the World Health 
Organization [13]. Detecting the mechanisms of resist-
ance to antimicrobials provide a helpful tool to prevent 
and control HAIs, especially considering the growing 
evidence of mobile genetic elements mediating and exac-
erbating nosocomial outbreaks [14, 15]. To address these 
critical pathogens, we implemented commercial rapid 
molecular tests, hybridization assays, and whole-genome 
sequencing to analyze CRPA in HAI and compare the 
aforementioned methods.

Eight of the 32 P. aeruginosa isolates from HAI in the 
National Children’s Hospital of Costa Rica exhibited 
carbapenem resistance. The presence of the blaVIM gene 
was identified using two different commercial kits. How-
ever, when testing the same isolates by PCR LDT, we also 
detected the blaIMP gene in addition to the blaVIM gene. 
WGS analyses confirmed the presence of alleles blaVIM-2 
and blaIMP-18, which were previously described in one 
of the main hospitals treating adults in the country [16]. 
Both genes are known to encode metallo-β-lactamase 
that confer resistance to carbapenems. Our analyses 
provide valuable information about the circulation of P. 
aeruginosa carrying blaIMP-18 and blaVIM-2 alleles in pedi-
atric infections in Costa Rica. Moreover, we identified 
that allele blaIMP-18 is present in HAI, but not targeted 
in the current rapid molecular technologies available in 
Costa Rica. This could lead to miss-identification of the P. 
aeruginosa resistance mechanisms if healthcare facilities 
don’t have access to redundant methods for confirmation.

This work brings together the context of hospital-
acquired infections, antimicrobial stewardship, diag-
nostic stewardship, availability of diagnostic methods, 
and whole genome sequencing to highlight the impor-
tance of local epidemiology when adopting strategies to 
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fight antimicrobial resistance. Similar situations can be 
observed globally as infections due to multidrug-resistant 
bacteria increase and new technologies become avail-
able. Rapid molecular tests for the detection of antibacte-
rial resistance continue to expand around the world. The 
availability, presentation, multiplex format, international 
validation, and low price makes these kits very attractive 
to use in economically constrained countries. However, 
they are developed for high-income countries in accord-
ance with their needs and epidemiological contexts; thus, 
they might not have all of the targets that are circulating 
in other countries.

Conclusions
The results of this study highlight the importance of 
knowing the local epidemiology when monitoring for 
CRPA in the context of HAIs using rapid molecular tests 
that were originally created for a different country.
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