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Abstract 

Background:  Antimicrobial resistance (AMR) is one of the greatest global health challenges today, but burden 
assessment is hindered by uncertainty of AMR prevalence estimates. Geographical representation of AMR estimates 
typically pools data collected from several laboratories; however, these aggregations may introduce bias by not 
accounting for the heterogeneity of the population that each laboratory represents.

Methods:  We used AMR data from up to 381 laboratories in the United States from The Surveillance Network to 
evaluate methods for estimating uncertainty of AMR prevalence estimates. We constructed confidence intervals for 
the proportion of resistant isolates using (1) methods that account for the clustered structure of the data, and (2) 
standard methods that assume data independence. Using samples of the full dataset with increasing facility coverage 
levels, we examined how likely the estimated confidence intervals were to include the population mean.

Results:  Methods constructing 95% confidence intervals while accounting for possible within-cluster correlations 
(Survey and standard methods adjusted to employ cluster-robust errors), were more likely to include the sample 
mean than standard methods (Logit, Wilson score and Jeffreys interval) operating under the assumption of inde-
pendence. While increased geographical coverage improved the probability of encompassing the mean for all 
methods, large samples still did not compensate for the bias introduced from the violation of the data independence 
assumption.

Conclusion:  General methods for estimating the confidence intervals of AMR rates that assume data are independ-
ent, are likely to produce biased results. When feasible, the clustered structure of the data and any possible intra-clus-
ter variation should be accounted for when calculating confidence intervals around AMR estimates, in order to better 
capture the uncertainty of prevalence estimates.
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Background
Antimicrobial resistance (AMR) represents one of 
the greatest global health challenges today, resulting 
in over two million antimicrobial-resistant infections 
and an estimated 35,000–162,000 deaths annually in 
the United States [1–4]. The World Health Organiza-
tion’s (WHO) latest report, based on AMR data from 

66 different countries, paints an alarming picture on 
the status of AMR across the world, with an increasing 
number of countries reporting high rates of resistance 
among antimicrobials used to treat common infections 
[5, 6]. Increasing access and use of antimicrobials in 
many low- and middle-income countries, as well as wide-
scale improper use in higher-income countries, is driv-
ing the growing resistance to antimicrobials around the 
world [7–9]. The problem of resistance is compounded 
by the slow introduction of new antimicrobials [10, 11]. 
However, despite the growing burden of resistance and 
the fact that estimates for many geographical regions are 

Open Access

*Correspondence:  klein@cddep.org
1 Center for Disease Dynamics, Economics and Policy (CDDEP), 
Washington, DC, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13756-021-00960-5&domain=pdf


Page 2 of 9Kalanxhi et al. Antimicrob Resist Infect Control           (2021) 10:91 

based on limited numbers of samples, there has been a 
lack of attention paid to estimating the uncertainty of 
these estimates.

Assessment of the burden of resistance in a country (or 
region) is typically derived from analysis of routine anti-
microbial susceptibility testing (AST). However, since 
not every AST result is available, statistical methods are 
used to estimate resistance rates for the selected region 
along with 95% confidence intervals (CI) denoting the 
uncertainty in the estimate. Besides sampling issues, for 
many countries susceptibility data comes from disparate 
sources with respect to quality, testing  methods, and 
socio-demographic status, all of which can bias inter-lab-
oratory comparisons.

The majority of studies construct CIs for AST data 
based on a binomial probability function which assumes 
data independence (i.e. all isolates have the same prob-
ability of testing positive and the results of each analy-
sis are unrelated) [7, 12–14]. However, this is likely to 
introduce bias in the measure of uncertainty as isolates 
are unlikely to be independent because (1) each facility 
draws from different patient populations, (2) each labora-
tory follows different processes and uses different equip-
ment, and (3) the criteria for ordering AST differs for 
each facility. Failure to account for these differences and 
control for within-cluster correlations can lead to under-
estimation of standard errors and misleadingly narrow 
confidence intervals [15]. Here, we evaluate the efficacy 
of the binomial probability function to define the level of 
uncertainty in a sample of antibiotic resistance data. We 
assess the likelihood that CIs generated by the binomial 
probability function (Wilson score and Jeffreys interval) 
and a transformed method (Logit), which operate under 
assumption of data independence, contain the true popu-
lation mean. Then we evaluate the performance of addi-
tional methods such as Survey and adjusted versions of 
aforementioned methods that take into account the vari-
ation between data sources and the clustered structure of 
the data in CI construction [16–18].

Methods
Antibiotic resistance data
We used 2011 data from The Surveillance Network 
(TSN) Database USA (Eurofins Medinet, Chantilly, VA, 
USA), a repository of AST results which has been previ-
ously used to evaluate antimicrobial resistance patterns 
[19]. The AST data in the TSN database were derived 
from routine diagnostic testing using standards estab-
lished by the Clinical and Laboratory Standards Institute 
(CLSI), and approved by the US Food and Drug Adminis-
tration [20]. In this study, we evaluated the construction 
of confidence intervals for proportions of Staphylococcus 
aureus isolates that were non-susceptible to one of three 

antibiotics: Oxacillin, Rifampin and Penicillin. These 
three were chosen to assess antibiotic-pathogen combi-
nations that included low (< 1%), high (~ 50%) and very 
high (~ 90%) resistance rates. Additionally, we evaluated a 
set of WHO priority pathogen/drug combinations: Kleb-
siella pneumoniae and Ceftriaxone, Pseudomonas aerugi-
nosa and Imipenem, and Acinetobacter baumannii and 
Imipenem [21]. As not every facility submitted data for 
every pathogen/drug combination, the complete dataset 
included isolates from up to 381 facilities geographically 
spread across up to 33 states in the United States. Isolates 
that were resistant (R) or of intermediate susceptibility (I) 
were considered non-susceptible isolates.

Data analysis
To assess how facility sample selection can affect the 
uncertainty of the estimated non-susceptibility rate, we 
computed the rates of non-susceptibility by repeatedly 
sampling from the total number of facilities in the TSN 
dataset. By randomly selecting different numbers of facil-
ities (10, 25, 50 and 100), we attempted to approximate 
the scenario where AMR prevalence in a country is based 
on a sample of laboratories. We performed 500 iterations 
where we sampled without replacement for each sample 
size and estimated the proportion non-susceptible ( ̂p ) 
and then constructed CIs for seven different methods 
(Table 1). The different methods can be divided into two 
different categories: (1) methods which assume isolate 
independence and (2) methods that assume that isolates 
are likely to be correlated at the facility level. A descrip-
tion of each model follows:

Wilson score interval and Jeffreys interval
The Wilson score and Jeffreys intervals, are two methods 
that estimate the probability of an event occurring in a 
population, provided the events’ outcome follows a bino-
mial distribution [13]. The Wilson score interval is close 
to the nominal level of 95% for a 95% confidence interval, 
hence its wide use in many AMR studies [7, 22, 23]. Jef-
freys and Wilson score intervals are considered to have 

Table 1  Methods for estimating confidence intervals

Methods Description Error estimations

Wilson score interval Binomial proportion CI Standard

Jeffreys interval Binomial proportion CI Standard

Logit Transformed method Standard

Wilson Robust Adjusted method Cluster-robust

Jeffreys Robust Adjusted method Cluster-robust

Logit Robust Adjusted method Cluster-robust

Survey Survey design method Standard
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similar performances and are recommended for use in 
estimations involving small sample sizes (n < 40) [24]. 
Both methods rely on the assumption of data independ-
ence and estimate variability through the calculation of 
standard errors. We compare the CI from these methods 
under assumptions of independence with versions that 
take account of potential differences by facility by includ-
ing cluster-robust errors and inter-cluster variation [25]. 
We call these modified methods as Wilson Robust and 
Jeffreys Robust.

Logit
Logit is a transformation method in which proportions 
are log-transformed to stabilize variance for the con-
struction of confidence intervals [16]. Though not com-
monly used in AMR studies, the transformations could 
normalize distribution and stabilize variance for samples 
derived from populations that may not have the same 
variance or standard deviation [26], which is common. 
We include a version that does not account for inter-clus-
ter variation when samples come from different sources 
and a modified version where cluster-robust errors 
account for inter-cluster variation, which we call Logit 
Robust.

Survey
An alternative means of assessing the resistance rate 
in a population is to consider the data like a survey. In 
particular, two feature characteristics of survey design, 
clustering and stratification, allow the data to more accu-
rately account for potential clustering at the facility level 
[27]. Clusters represent the Primary Sampling Unit (PSU) 
from where the data are collected from (i.e. different 
laboratories), and this stratification enables accounting 
for intra-cluster correlation during data analysis. Fur-
thermore, additional stratification enables the grouping 
of clusters according to shared qualities (i.e. quality or 
geographical spread). In the context of this study, the CI 
were constructed using the svy command; the facilities 

were considered as PSU and the analyses were stratified 
according to the geographical spread represented by the 
US state in which each facility is located.

Coverage probability
CIs represent estimates, which should ideally contain 
the true population estimate at the stated level (i.e. 95% 
of the time). As they are constructed based on data from 
a sample of the total population, they are susceptible to 
sampling variation and may, at times, not include the 
true mean value; however, the assumption is that for a 
95% CI there is a 95% level of certainty that it includes 
the true population mean. Furthermore, with repeated 
sampling, there is a 95% probability that the CI for that 
sample should cover the true mean. To evaluate the per-
formance of each method, we estimated their coverage 
probability, a method which assesses the proportion of 
times that the true population estimate is included in 
the CI range when randomly sampling from a certain 
population. Coverage probability was calculated for each 
method as the proportion of all CIs of the samples that 
encompassed the overall non-susceptibility rate from all 
the reporting facilities.

Simulations for the calculation of coverage probabilities 
for each method were performed using Stata version 16.0 
(StataCorp LP, College Station, TX, USA). Group and 
pairwise comparisons of coverage probabilities for the 
different methods were performed with non-parametric 
tests Kruskal–Wallis and Mann–Whitney–Wilcoxon 
test, respectively using R version 3.6.3. Results were con-
sidered statistically significant when the P value was less 
than 0.05.

Results
The AMR data consisted of isolates collected in 2011 
from 174 to 381 health facilities across 33 states in the 
US. The number of isolates tested from each facility 
spanned from one to thousands (Table 2) and the over-
all distribution of the samples across the states where the 

Table 2  Susceptibility of pathogens to antimicrobial agents and sample distribution

Pathogen/antimicrobial agent No. of isolates (%) Distribution of isolates

Susceptible Resistant Total No. of testing facilities (range 
of tested isolates)

No. of states

S. aureus/Rifampin 124,457 (98.8) 1466 (1.2) 125,923 168 (1–4977) 31

S. aureus/Oxacillin 71,788 (51.8) 71,605 (48.3) 148,393 174 (1–5183) 33

S. aureus/Penicillin 600 (7.7) 102,980 (92.3) 111,580 156 (1–4979) 33

K. pneumoniae/Ceftriaxone 37,227 (93%) 2802 (7.0) 40,029 358 (1–4162) 31

A. baumannii/Imipenem 2651 (75.2) 873 (24.8) 3524 227 (1–1299) 29

P. aeruginosa/Imipenem 35,934 (81.2) 8319 (18.8) 44,253 381 (1–3604) 31
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facilities were located is illustrated in Additional file  1: 
Fig. S1. The percentage of non-susceptible isolates for S. 
aureus (sum of isolates interpreted as resistant and inter-
mediate) from across all the facilities was 1.2%, 48.3% and 
92.3% for Rifampin, Oxacillin, and Penicillin, respectively 
(Table 2). Carbapenem resistance was 24.8% for A. bau-
mannii isolates and 18.8% for P. aeruginosa isolates, while 
cephalosporin resistance was 7.0% for K. pneumoniae 
(Table 2).

When constructing CIs from data collected from 10 
facilities, the coverage probabilities for the Wilson score 
method were 55% for S. aureus/Rifampin and only 16% 
and 21% for S. aureus/Oxacillin and S. aureus/Penicillin, 
respectively (Fig. 1, Additional file 1: Table S1). Increas-
ing the sample size (by sampling from an increasing num-
ber of facilities), to 25 or 50 was not associated with an 
increase in coverage for the standard methods (P = 0.18 
and P = 0.32), though there was a modest increase in cov-
erage probability when the number of facilities sampled 
was increased to 100 (P < 0.01). However, as illustrated 
by the case of Rifampin-resistant isolates, the coverage 
probability of these methods was significantly greater 
for proportions nearing zero (P < 0.01). Compared to the 
Wilson Score, Jeffreys, and Logit, the Survey method was 
significantly more likely to contain the population mean 
(P < 0.01) (Fig. 1).

Accounting for the potential inter-facility clustering for 
the Wilson Score, Jeffreys, and Logit methods resulted 
in significantly greater coverage probabilities (P < 0.01) 
(Additional file 1: Fig. S2). Results were similar for other 

pathogen and drug combinations; the use of robust errors 
increased probability coverage when constructing CIs for 
carbapenem-resistant (A. baumannii and P. aeruginosa) 
and 3rd generation cephalosphorin-resistant (K. pneumo-
niae) pathogens (Fig. 2).

The robust version of the standard methods and the 
Survey method generated wider CIs (Fig.  3, Additional 
file  1: Table  S2, Fig. S3). Applying the different meth-
ods to the overall population we found that the CIs for 
the robust methods were about 11 and 7 times larger 
than those for the standard methods for S. aureus with 
Oxacillin and Penicillin respectively, and about 4 times 
larger for Rifampin. For the Wilson Score method, the 
range increased from 0.1 to 0.4% for Rifampin, from 0.5 
to 5.5% for Oxacillin, and 0.4% to 2.8% for Penicillin. The 
results were similar for the other methods. Additionally, 
the uncertainty displayed by CI widths, was found to be 
greater at smaller sample sizes and for proportions near-
ing zero (Fig. 4, Additional file 1: Figs. S4 and S5).

Discussion
Assessing the burden of AMR across the world and 
especially in low- and middle-income countries is chal-
lenged by gaps in prevalence and geographical distribu-
tion, mainly due to lack of surveillance infrastructure 
and technical expertise [22, 28–30]. In countries where 
data are available, AMR outcomes are typically pooled to 
achieve national or regional averages [6], however, given 
the great variation in quality and geographical spread 
between health facilities and laboratories, this average 
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Fig. 1  The effect of proportion value and number of sampling facilities on coverage probabilities. Coverage probabilities for all methods were 
calculated for estimation of confidence intervals for different proportions of resistant isolates, as indicated by the varying degrees of resistance to a 
Rifampin (1.2%), b Oxacillin (48.3%) and c Penicillin (92.3%), and for samples collected from an increasing number of facilities (10, 25, 50 and 100)
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may not be representative of population estimates [31]. 
Inference on population parameters based on data from a 
population sample are generally accompanied by 95% CIs 
as a measure of uncertainty. For AMR data, most studies 
assume the data follows a binomial distribution, and each 

result is independent from all other results. However, in 
reality outcomes from one health facility may be more 
comparable to each other than to those from other cent-
ers, implying a degree of data correlation. Thus, the vio-
lation of the data independence assumption often leads 
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Fig. 2  Effect of cluster-robust errors on coverage probabilities. The coverage probabilities of the standard and adjusted Wilson methods (using 
cluster-robust errors) and the survey method were calculated for estimation of confidence intervals for AMR estimates for various pathogen and 
drug combinations: a P. aeruginosa and Imipenem, b A. baumannii and Imipenem, c K. pneumoniae and Ceftriaxone, using data collected from an 
increasing number of facilities (10, 25, 50 and 100)
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Fig. 3  Effect of accounting for intra-cluster correlation on confidence interval widths. Proportions of a Rifampin-, b Oxacillin- and c 
Penicillin-resistant isolates from the entire dataset and respective 95% CI were estimated using standard methods (Logit, Wilson, Jeffreys), their 
modified versions employing cluster-robust errors, and Survey
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to confidence interval estimates that are too narrow and 
unlikely to contain the true proportion of resistance in 
the population.

By randomly sampling facilities included in a large 
dataset of AMR data from the US, we demonstrate the 
bias in uncertainty measurements that is likely a charac-
teristic of most AMR data that are collected from mul-
tiple facilities. At low resistance levels, the bias in these 
results lessened, but was not mitigated. However, at 
high rates, the impact was quite drastic—the coverage 
probability was only around 25% in the non-clustered 
methods compared with over 80% even with the fewest 
number of facilities and closer to 95% as the sample num-
bers increased in the clustered methods. When account-
ing for clustering, the confidence intervals were 7–11 
times larger on average compared to the non-clustered 
methods. Moreover, the difference in confidence inter-
val widths between non- and cluster methods increased 
as the number of sampled facilities decreased from 174 
to 10. For instance, using the Wilson method and sam-
pling from 174 facilities, representing the entire data-
set for A. aureus, the average spread of the confidence 
intervals for Oxacillin-resistant isolates increased from 
0.5 in the non-cluster methods to 5% points in the clus-
tered methods; however, the average confidence interval 
spread increased from 2.6 to 14 percentage points, when 
sampling from 10 facilities. Widening of the confidence 
intervals widths as the number of the sampling facilities 
is reduced, illustrates the increasing uncertainty when 

sampling from few units with great heterogeneity in the 
proportion of resistant isolates. In such instances, report-
ing of AMR estimates from each cluster, may be more 
appropriate than aggregating the samples.

While increasing the number of facilities, and thus the 
number of isolates in the sample, reduced the bias (i.e., 
increased the coverage probability in most cases), this 
difference was only marginal and not sufficient to remove 
the bias introduced by the violation of the data inde-
pendence assumption. In some instances, as in the case 
of K. pneumonia, the increase in the number of sampling 
facilities led to a reduction of coverage probability. This is 
likely due to high geographical heterogeneity as the sur-
vey method, which accounts for this type of sampling, did 
not show this same pattern. However, confidence inter-
vals for small proportions of resistant isolates (equal or 
less than 0.01), were wider and were associated with bet-
ter coverage probabilities, even when data correlation 
was not taken into consideration. This observation was 
in line with findings from a previous study demonstrat-
ing (through simulations with real pharmacological data), 
that the Wilson score with continuity correction was rec-
ommended as one of the methods for constructing confi-
dence intervals for very small proportions ranging from 
0.001 to 0.1 [32]. Overall though, AMR prevalence esti-
mates derived from aggregated data should include strat-
ification of samples according to their source or other 
shared qualities, whenever possible. When this infor-
mation is not available, alternative methods should be 
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Fig. 4  Effect of sample size on confidence interval widths. Proportions of a Rifampin- b Oxacillin- and c Penicillin-resistant isolates from increasing 
number of facilities, and their respective 95% CI were estimated using the Wilson score method and its adjusted robust version, employing 
cluster-robust errors
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evaluated to improve the estimates. For example, a boot-
strap analysis that resamples results with random cluster-
ing. Future studies should evaluate methods to account 
for this uncertainty bias when the number of labs is less 
than ten.

The fact that employing cluster-robust errors instead of 
standard errors led to a significant improvement in cov-
erage and widening of the confidence intervals, suggests 
that facility-level differences matter. There are several 
potential reasons for these differences. The first is that 
each represents geographical differences in resistance. 
There is some evidence that local patterns of resistance 
may be important in S. aureus [33]. The second is that 
there may be differences in practice patterns that deter-
mine patient culture probability. Variation in practice 
patterns are well documented in medicine [34–36]. For 
example, one study of blood culturing practices found 
wide variation in the rate of blood cultures per 1,000 
patient days [37]. These variations in culturing practices 
could lead to large differences in resistance rate esti-
mates. Finally, there may be differences in the quality of 
the culture or the laboratory. Contamination of samples 
with other organisms can affect resistance rates either by 
including estimates of organisms that are not clinically 
important or resulting in samples being rejected. In addi-
tion, the sensitivity and quality of laboratory instruments 
can vary widely. While this is likely less of a problem in 
high-income countries, there still remain differences in 
how samples are processed that could introduce biased 
differences. In many low-income countries however, 
resource constraints can result in drastic differences in 
laboratory quality.

The goal of this study was to assess the implications of 
the choice of methodology in CI construction. However, 
an important limitation of the robust error approach is 
that while it adjusts standard errors for correlated data, 
it has no impact on the AMR estimates themselves which 
are sensitive to data heterogeneity across the sampling 
facilities. This is especially important when there are sig-
nificant differences in the number of samples processed 
in each facility, a scenario that would warrant the use of 
weighted analysis methods.

While we attempted to use representative and gener-
alizable data to assess these methodologies, the dataset 
used in our simulations contains data solely from the 
US, where heterogeneity in data sources may be con-
siderably lower than in the low- and middle-income 
countries. We used the TSN database though as it is 
one of the largest datasets available with high, repre-
sentative coverage, which allowed us to simulate sce-
narios in which different numbers of facilities with 
different sample volumes and characteristics were cho-
sen in the sampling frame. The results are important 

for estimating the burden of resistance in other set-
tings, as they illustrate that even in settings with large 
geographic representation and high quality labs, large 
uncertainties remain in AMR estimates. Finally, we 
assumed that the entire dataset contained the “true” 
population mean—and estimated coverage probabili-
ties were based on the mean value. While the dataset is 
large, it is itself a sample of the population. Biases in the 
dataset could constrain the implications of the results, 
but the larger point of the analysis is not affected by 
this limitation.

Conclusions
The construction of confidence intervals is necessary 
for understanding the level of uncertainty in estimates 
of AMR prevalence. Methods that assume independ-
ence between samples are likely to be biased and under-
estimate the variance in the estimate. Therefore, to 
increase the likelihood that CIs contain the true popu-
lation mean, AMR prevalence estimates derived from 
data aggregated across facilities should include strati-
fication of samples according to their source, or other 
shared qualities whenever possible. In reality, informa-
tion on data sources is not always available and it is not 
always possible to incorporate stratification of samples 
in the analysis. Hence, for this reason, it is important to 
specify the types of methods used in the construction 
of the confidence intervals and to recognize that they 
may not always include the true population resistant 
estimates.
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