This report indicates that eradicating even a limited outbreak requires substantial efforts and resources. Here, the outbreak was triggered by a failure in the systematic VRE screening. Indeed, the index patient was a candidate for liver transplantation. Owing to the increasing risk of VRE infection in transplant recipients, this patient should have been screened for VRE even if he was admitted in a non-hepatobiliary ward. Furthermore, the index patient came from Portugal where the prevalence of VRE among clinical Enterococcus faecium is approximately 25% [4]. Thus, this patient belonged to a population “at risk” for VRE colonization. Altogether, this suggests that the active surveillance program has failed. Such failure has been previously reported in liver transplant ICUs where active surveillance cultures were performed only on approximately 50% of the patients within 24h of admission [5]. In this study [5], the failure has been imputed to staff workload. In our study, same reason may have caused the nonfulfillment of systematic VRE screening. Altogether, this underlines that the implementation of the active surveillance program could have some limitations in the real life setting.
Despite this failure, the time taken to eradicate the VRE outbreak was rapid as it was less than two months. Indeed, experiences suggest than any delay in appropriate measures strengthens the threat of endemicity [6]. In this study, the involvement of the infection disease unit and hospital management provided the necessary leadership to enforce strict control measures. Consistently, no new colonization occurred once colonized patients were identified and transferred to infectious disease unit. This highlight that the isolation of colonized patient should not be delayed.
The cost of these measures that include the staffing, the barrier precautions and contact isolation far exceeded the cost of active surveillance cultures. However, one might wonder whether resort to such expensive measure was mandatory. Indeed, nosocomial pathogen outbreaks often trigger a debate between advocates of strict control measures and those who favor a less resource-intensive attitude, preserving usual clinical activity [7]. The Western Australian (WA) experience has convincingly shown that enhanced infection control practices are able to prevent transition from a large hospital outbreak to endemicity [8]. An often-debated measure is isolation, as opposed to in situ barrier precautions. In many hospitals, isolation sectors have to be set up by subtracting beds to routine clinical activity, which often results in a loss of income for the hospital since beds are then reserved for newly colonized or infected patients [6, 7]. The case for isolation is not fully substantiated [9]. Simple cohorting may be sufficient where adequate architectural conditions are met (single-bed rooms, separate nurse station) and trained staff is present. Such conditions are often met in infectious disease units. Finally, the appeal of a resource-sparing infection control policy should be balanced against the likely and lasting cost of endemicity [10]. Estimating the cost-benefit of the eradication of a hospital outbreak is difficult as it depends on several factors, notably the delay before the next outbreak. However, Montecalvo et al.[10] showed that even in an endemic setting strict infection control measures may yield back up to 2.70 dollars for each dollar spent.