McGowan JE. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis. 1983;5(6):1033–48.
Article
PubMed
Google Scholar
Mladenovic-Antic S, Kocic B, Velickovic-Radovanovic R, Dinic M, Petrovic J, Randjelovic G, et al. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10-year study. J Clin Pharm Ther. 2016;41(5):532–7.
Article
CAS
PubMed
Google Scholar
Velickovic-Radovanovic R, Petrovic J, Kocic B, Antic S, Mitic R. Analysis of antibiotic utilization and bacterial resistance changes in a surgical clinic of Clinical Centre, Nis. J Clin Pharm Ther. 2012;37(1):32–6.
Article
CAS
PubMed
Google Scholar
Velickovic-Radovanovic R, Stefanovic N, Damnjanovic I, Kocic B, Antic S, Dinic M, et al. Monitoring of antibiotic consumption and development of resistance by enterobacteria in a tertiary care hospital. J Clin Pharm Ther. 2015;40(4):426–30.
Article
CAS
PubMed
Google Scholar
Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG, et al. Further observations on penicillin. Lancet. 1941;2:177–89.
Article
Google Scholar
Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. Proc Soc Exp Biol Med. 1942;51(3):386–9.
Article
CAS
Google Scholar
Power EGM. Bacterial resistance to antibiotics. In: Hugo WB, Russell AD, editors. Pharmaceutical microbiology. 6th ed. Oxford: Blackwell Science; 1998. p. 181–200.
Google Scholar
WHO. A Safer Future: Global Public Health Security in the 21st century. Geneva; 2007. http://www.who.int/whr/2007/whr07_en.pdf. Accessed 7 Nov 2016.
Sheldon A. Antibiotic mechanisms of action and resistance. In: Mahon CR, Lehman DC, Manuselis G, editors. Textbook of diagnostic microbiology. 3rd ed. St. Louis: Saunders Elsevier; 2007. p. 303–18.
Google Scholar
Davies J. Microbial resistance to antimicrobial agents. In: Ristuccia AM, Cunha BA, editors. Antimicrobial therapy. New York: Raven; 1984. p. 11–21.
Google Scholar
Foster TJ. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 1983;47(3):361–409.
CAS
PubMed
PubMed Central
Google Scholar
Towner KJ. Bacterial genetics. In: Greenwood D, Slack R, Peutherer J, Barer M, editors. Medical microbiology: a guide to microbial infections: pathogenesis, immunity, laboratory diagnosis and control. 17th ed. Edinburgh; New York: Churchill Livingstone/Elsevier; 2007. p. 68–79.
Google Scholar
Compassion in World Farming. Antibiotics in farm animal production. 2011. http://www.fao.org/fileadmin/user_upload/animalwelfare/antibiotics_in_animal_farming.pdf. Accessed 2 Feb 2016.
Black WD. The use of antimicrobial drugs in agriculture. Can J Physiol Pharmacol. 1984;62(8):1044–8.
Article
CAS
PubMed
Google Scholar
Gustafson RH, Bowen RE. Antibiotic use in animal agriculture. J Appl Microbiol. 1997;83(5):531–41.
Article
CAS
PubMed
Google Scholar
Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127(1):4.
PubMed
PubMed Central
Google Scholar
Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, et al. Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control. 2015;4:49.
Article
PubMed Central
Google Scholar
Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015;5:28564.
PubMed
Google Scholar
WHO. Tackling antibiotic resistance from a food safety perspective in Europe. Copenhagen; 2011. http://www.euro.who.int/__data/assets/pdf_file/0005/136454/e94889.pdf?ua=1. Accessed 30 Jun 2016.
Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother. 1991;27(2):199–208.
Article
CAS
PubMed
Google Scholar
Sapkota AR, Curriero FC, Gibson KE, Schwab KJ. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated Swine feeding operation. Environ Health Perspect. 2007;115(7):1040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stobberingh E, van den Bogaard A, London N, Driessen C, Top J, Willems R. Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans? Antimicrob Agents Chemother. 1999;43(9):2215–21.
CAS
PubMed
PubMed Central
Google Scholar
Mulders MN, Haenen AP, Geenen PL, Vesseur PC, Poldervaart ES, Bosch T, et al. Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in The Netherlands. Epidemiol Infect. 2010;138(5):743–55.
Article
CAS
PubMed
Google Scholar
Castanon J. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007;86(11):2466–71.
Article
CAS
PubMed
Google Scholar
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112(18):5649.
Article
CAS
PubMed
PubMed Central
Google Scholar
FAO, Regional Office for Asia and the Pacific. Antimicrobial Use in Livestock Production and Antimicrobial Resistance in the Asia-Pacific Region. http://cdn.aphca.org/dmdocuments/RBR_1210_APHCA%20AMR.pdf. Accessed 15 Feb 2016.
Chuanchuen R, Padungtod P. Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J Vet Med Sci. 2009;71(10):1349–55.
Article
CAS
PubMed
Google Scholar
Boonmar S, Morita Y, Pulsrikarn C, Chaichana P, Pornruagwong S, Chaunchom S, et al. Salmonella prevalence in meat at retail markets in Pakse, Champasak Province, Laos, and antimicrobial susceptibility of isolates. J Glob Antimicrob Resist. 2013;1(3):157–61.
Article
Google Scholar
Lay KS, Vuthy Y, Song P, Phol K, Sarthou JL, Lay KS, et al. Prevalence, numbers and antimicrobial susceptibilities of Salmonella Serovars and Campylobacter spp. in retail poultry in Phnom Penh, Cambodia. J Vet Med Sci. 2010;73(3):325–9.
Article
PubMed
Google Scholar
World Bank. Cambodia country overview. 2016. http://www.worldbank.org/en/country/cambodia/overview. Accessed 09 Sept 2016.
Google Scholar
National Institute of Statistics, Ministry of Planning. Cambodia Demographic and Health Survey 2014. Phnom Penh; 2014. https://dhsprogram.com/pubs/pdf/FR312/FR312.pdf. Accessed 24 Aug 2016.
Heft-Neal S, Otte J, Roland-Holst D. Poultry sector transition in Cambodia. In: Zilberman D, Otte J, Roland-Holst D, Pfeiffer D, editors. Health and animal agriculture in developing countries, vol. 19. Springer New York Dordrecht Heidelberg London: Food and Agriculture Organization of the United Nations; 2012. p. 371–89.
FAO Animal Production and Health Division. Review of the poultry production and assessment of the socio-economic impact of the highly pathogenic avian influenza epidemic. Cambodia; 2004. http://www.fao.org/docs/eims/upload//228586/poultrysector_khm_en.pdf. Accessed 7 Nov 2016.
FAO. Rural livelihood and biosecurity of smallholder poultry producers and poultry value chain - Gender and socio-economic impacts of highly pathogenic avian influenza (HPAI) and its control in Siem Reap Province, Cambodia. Rome; 2009. http://www.fao.org/docrep/013/al681e/al681e00.pdf. Accessed 7 Nov 2016.
National Veterinary Research Institute, DAHP, MAFF. Characterisation of Swine production systems in the Cambodian Mekong lowland region. Phnom Penh; 2012. https://agrocambodia.files.wordpress.com/2011/05/characterization-of-swine-pro-duction-system-in-southeastern-cambodia-c2ad-preliminary-work-to-epidemiological-studies.pdf. Accessed 28 Sept 2016.
Sovann S, San S. Pig production in Cambodia. In: Jones R, editor. Priority for research in Southeast Asia and the Pacific to 2010. Canberra: Australian Centre for International Agricultural Research; 2010.
Google Scholar
Giacomini M, Cook D. Users’ guides to the medical literature XXIII. Qualitative research in health care A. Are the results of the study valid? JAMA. 2000;284(3):357–62.
Article
CAS
PubMed
Google Scholar
Morse JM, Morse JM. The significance of saturation. Qual Health Res. 1995;5(2):147–9.
Article
Google Scholar
Francis JJ, Johnston M, Robertson C, Glidewell L, Entwistle V, Eccles MP, et al. What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychol Health. 2009;25(10):1229–45.
Article
Google Scholar
Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3:77–101.
Article
Google Scholar
Sandelowski M, Leeman J. Writing usable qualitative health research findings. Qual Health Res. 2012;22(10):1404–13.
Article
PubMed
Google Scholar
Archawakulathep A, Kim C, Meunsene D, Handijatno D, Hassim H, Rovira H, et al. Perspectives on antimicrobial resistance in livestock and livestock products in ASEAN countries. Thai J Vet Med. 2014;44(1):5–13.
Google Scholar
FAO/WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods (CAC/MRL 2-2015): Updated as at the 38th Session of the Codex Alimentarius Commission (July 2015). 2015. http://www.fao.org/fao-who-codexalimentarius/standards/vetdrugs/veterinary-drugs/en/. Accessed 10 Nov 2016.
Hershberger E, Oprea SF, Donabedian SM, Perri M, Bozigar P, Bartlett P, et al. Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother. 2005;55:127–30.
Article
CAS
PubMed
Google Scholar
Smith KE, Esser JMB, Edberg CWH, LEano F, BEnder JB, Wicklund JH, et al. Quinolone-resistant Campylobacter Jejuni infection in Minnesota, 1992–1998. N Engl J Med. 1999;340(20):1525-32.
Nelson JM, Chiller TM, Powers JH, Angulo FJ. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin Infect Dis. 2007;44(7):977–80.
Article
CAS
PubMed
Google Scholar
Emary K, Moore CE, Chanpheaktra N, An KP, Chheng K, Sona S, et al. Enteric fever in Cambodian children is dominated by multidrug-resistant H58 Salmonella enterica serovar Typhi with intermediate susceptibility to ciprofloxacin. Trans R Soc Trop Med Hyg. 2012;106(12):718–24.
Article
CAS
PubMed
Google Scholar
Vlieghe ER, Phe T, De Smet B, Veng HC, Kham C, Lim K, et al. Bloodstream infection among adults in Phnom Penh, Cambodia: key pathogens and resistance patterns. PLoS One. 2013;8(3):e59775.
Kasper MR, Sokhal B, Blair PJ, Wierzba TF, Putnam SD, Kasper MR, et al. Emergence of multidrug-resistant Salmonella enterica serovar Typhi with reduced susceptibility to fluoroquinolones in Cambodia. Diagn Microbiol Infect Dis. 2010;66(2):207–9.
Article
CAS
PubMed
Google Scholar
Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47(2):559–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–89.
Article
CAS
PubMed
PubMed Central
Google Scholar