Pakistan has a mixed public-private health care system. The public health sector comprises of a three tiered structure; primary (basic health units), secondary (tehsil and district hospitals) and tertiary (tertiary hospitals) care [17]. Due to limited spending on health by the government [18] monetary and personnel resources required to establish and maintain standardized laboratory practices are insufficient. Furthermore, with 86.8% [19] of health related expenses borne out of pocket, many resort to health services provided by the private sector. Laboratories from both public and private sector included in our study scored either < 50% (requiring significant improvement) or between 50-80% (needing some improvement) in 7 of the 9 categories evaluated. In particular limited use of quality control (QC) strains and standardized inoculum are pertinent gaps that undermine the reliability and reproducibility of AST being carried out. Additionally uninterrupted power supply in the public sector laboratories is a significant gap to be circumvented for improving laboratory infrastructure. These findings are consistent with earlier reports [20,21,22]. Low participation in AMR surveillance, a weak collaborative network between laboratories and insufficient use of Laboratory Information Systems (LIS) are underlying bottlenecks that need to be addressed in order to strengthen data collection, validation and aggregation of regional and national resistance data. LIS in particular is recognized to not only improve capacity for AMR surveillance through the collation of data from different laboratories but to also contribute towards standardization and improvement of the quality control of methodology [23].
While an earlier knowledge and practices (KAP) survey from Pakistan reports considerable gaps between awareness and implementation of standardized laboratory practices [24] comparatively higher scores of 54 and 72% for public and private laboratories, respectively, indicated in our study, suggest that implementation of SOPs has improved since the earlier KAP survey.
In resource limited healthcare settings where national accrediting bodies exist, a higher percentage of accredited laboratories have been observed to belong to the private sector [25]. In such settings, private sector laboratories, have the potential to assume a pivotal role in combating AMR by partnering with public sector laboratories and by participating in regional or national surveillance to produce a clearer picture of resistance trends [25]. In contrast, data from our study indicates that participation in external quality assurance was weak not only in public laboratories (46%) but also in the private sector labs (38%). Paradoxically, despite a high participation of public sector labs in internal quality assurance programs (92%), prevalence of significant gaps in these labs reiterates that internal quality assurance can be more robust and effective when complimented with an External Quality Assurance System (EQAS).
Knowledge based-interventions in the form of short courses addressing specific diseases, along with skill development have been proven to be effective models for laboratory capacity building [11]. Consistent with these findings, significant efforts by cohort laboratories towards addressing gaps; development and implementation of SOPs regular use of standardized quality control strains and standardized inoculum for AST emphasizes the value of knowledge-based interventions towards addressing laboratory gaps. The success of proficiency testing (PT) in conjunction with training programs has been highlighted by a number of studies from resource limited settings [26,27,28,29]. The approach of partnering laboratories fulfilling core capacity with weaker labs suggests a model of a sustainable network for knowledge and skill transfer for RLCs. It has been suggested that such partnering of laboratories may also contribute towards reducing costs and increasing the range of diagnostic facilities; enabling a robust laboratory system for surveillance of infectious diseases [30]. Furthermore, tiered laboratory networks along with clearly defined national guidelines that push for gearing lab capacity towards national accreditation can achieve remarkable improvements in laboratory diagnostic capacity for surveillance.
The initial part of our study relied on a self assessment tool to evaluate laboratory capacity. An inherent drawback of this approach is that it could have been influenced by individual bias as well as knowledge and experience of the respondents. However, the fact that the cohort laboratories were able to successfully address many of their gaps was encouraging and suggests a model wherein laboratory networks can be established and leveraged towards improving diagnostic capacity in resource limiting settings. It is important to note that the role of the cohort laboratories leadership was essential for success of this model. The laboratory leadership encouraged their staff to participate in training activities and supported implementation of changes needed to address identified gaps. Such facilitation was key in strengthening of the laboratory network.