Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob. 2016;15(1):20.
Article
Google Scholar
Khalifa HO, et al. High carbapenem resistance in clinical gram-negative pathogens isolated in Egypt. Microb Drug Resist. 2017;23(7):838–44.
Article
CAS
Google Scholar
Mirsalehian A, et al. Determination of carbapenem resistance mechanism in clinical isolates of Pseudomonas aeruginosa isolated from burn patients, in Tehran, Iran. Journal of epidemiology and global health. 2017;7(3):155–9.
Article
Google Scholar
Xu Y, et al. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. Journal of thoracic disease. 2015;7(3):376.
PubMed
PubMed Central
Google Scholar
Satlin MJ, et al. Multicenter clinical and molecular epidemiological analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE epicenter of the United States. Antimicrob Agents Chemother. 2017;61(4):e02349–16.
Article
CAS
Google Scholar
Wang, J.-T., et al., Carbapenem-nonsusceptible enterobacteriaceae in Taiwan. PLoS One, 2015. 10(3): p. e0121668.
Article
Google Scholar
Ye Y, et al. Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Experimental and Therapeutic Medicine. 2018;15(1):1143–9.
PubMed
Google Scholar
Dalmolin TV, et al. Detection and analysis of different interactions between resistance mechanisms and carbapenems in clinical isolates of Klebsiella pneumoniae. Braz J Microbiol. 2017;48(3):493–8.
Article
CAS
Google Scholar
Zafer MM, et al. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed Res Int. 2014:2014.
Iraz M, et al. Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey. Annals of laboratory medicine. 2015;35(6):595–601.
Article
CAS
Google Scholar
Yong D, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.
Article
CAS
Google Scholar
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211.
Article
CAS
Google Scholar
Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis. 2008;21(4):367–71.
Article
Google Scholar
Nordmann P, Poirel L. Emerging carbapenemases in gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–31.
Article
CAS
Google Scholar
Haruta S, et al. Functional analysis of the active site of a metallo-β-lactamase proliferating in Japan. Antimicrob Agents Chemother. 2000;44(9):2304–9.
Article
CAS
Google Scholar
Ito H, et al. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother. 1995;39(4):824–9.
Article
CAS
Google Scholar
Hawkey PM, et al. Occurrence of a new metallo-β-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People's Republic of China. FEMS Microbiol Lett. 2001;194(1):53–7.
CAS
PubMed
Google Scholar
Hawkey P. Multidrug-resistant gram-negative bacteria: a product of globalization. J Hosp Infect. 2015;89(4):241–7.
Article
CAS
Google Scholar
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiology spectrum. 2016;4(2).
Scoulica EV, et al. Spread of Bla VIM-1-producing. E coli in a university hospital in Greece Genetic analysis of the integron carrying the bla VIM-1 metallo-β-lactamase gene Diagnostic microbiology and infectious disease. 2004;48(3):167–72.
CAS
Google Scholar
Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11(5):381–93.
Article
CAS
Google Scholar
Kazmierczak, K.M., et al., Multi-year, multi-national survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and P. aeruginosa. Antimicrob Agents Chemother, 2015: p. AAC. 02379–15.
Rolain J, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect. 2010;16(12):1699–701.
Article
CAS
Google Scholar
Berrazeg M, et al. New Delhi Metallo-beta-lactamase around the world: an eReview using Google maps. Eurosurveillance. 2014;19(20):20809.
Article
Google Scholar
Pfeifer Y, et al. Molecular characterization of Bla NDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother. 2011;66(9):1998–2001.
Article
CAS
Google Scholar
Bonnin R, et al. Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe. Clin Microbiol Infect. 2012;18(9):E362–5.
Article
CAS
Google Scholar
Nakazawa Y, et al. A case of NDM-1-producing Acinetobacter baumannii transferred from India to Japan. J Infect Chemother. 2013;19(2):330–2.
Article
Google Scholar
Kumarasamy KK, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.
Article
CAS
Google Scholar
Litzow JM, et al. High frequency of multidrug-resistant gram-negative rods in 2 neonatal intensive care units in the Philippines. Infection Control & Hospital Epidemiology. 2009;30(6):543–9.
Article
Google Scholar
Le NK, et al. High prevalence of hospital-acquired infections caused by gram-negative carbapenem resistant strains in Vietnamese pediatric ICUs: a multi-Centre point prevalence survey. Medicine. 2016;95(27).
Article
CAS
Google Scholar
Bhat V, et al. Bacteriological profile and antibiotic susceptibility patterns of clinical isolates in a tertiary care cancer center. Indian journal of medical and paediatric oncology: official journal of Indian Society of Medical & Paediatric Oncology. 2016;37(1):20.
Article
Google Scholar
Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006;57(3):373–83.
Article
CAS
Google Scholar
Bonnin RA, Poirel L, Nordmann P. AbaR-type transposon structures in Acinetobacter baumannii. J Antimicrob Chemother. 2011;67(1):234–6.
Article
Google Scholar
Khan M, et al. Emerging bacterial resistance patterns in febrile neutropenic patients: experience at a tertiary care hospital in Pakistan. JPMA. The Journal of the Pakistan Medical Association. 2004;54(7):357–60.
CAS
PubMed
Google Scholar
Irfan S, et al. Molecular and epidemiological characterisation of clinical isolates of carbapenemresistant Acinetobacter baumannii from public and private sector intensive care units in Karachi, Pakistan. J Hosp Infect. 2011;78(2):143–8.
Article
CAS
Google Scholar
Khan F, Khan A, Kazmi SU. Prevalence and susceptibility pattern of multi drug resistant clinical isolates of Pseudomonas aeruginosa in Karachi. Pakistan journal of medical sciences. 2014;30(5):951.
PubMed
PubMed Central
Google Scholar
Kaleem F, et al. Frequency and susceptibility pattern of metallo-beta-lactamase producers in a hospital in Pakistan. The Journal of infection in developing countries. 2010;4(12):810–3.
Article
Google Scholar
Bauer A, et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493.
Article
CAS
Google Scholar
Wadekar MD, Anuradha K, Venkatesha D. Phenotypic detection of ESBL and MBL in clinical isolates of Enterobacteriaceae. Int J Current Res Acad Rev. 2013;1(3):89–5.
CAS
Google Scholar
Kumar S, Mehra S. Performance of modified Hodge test and combined disc test for detection of Carbapenemases in clinical isolates of Enterobacteriaceae. Int J Curr Microbiol App Sci. 2015;4(5):255–61.
CAS
Google Scholar
Abrar S, et al. Distribution of CTX-M group I and group III β-lactamases produced by Escherichia coli and klebsiella pneumoniae in Lahore, Pakistan. Microb Pathog. 2017;103:8–12.
Article
CAS
Google Scholar
Colom K, et al. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA–1 genes in Enterobacteriaceae. FEMS Microbiol Lett. 2003;223(2):147–51.
Article
CAS
Google Scholar
Shibata N, et al. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41(12):5407–13.
Article
CAS
Google Scholar
Galani I, et al. First identification of an Escherichia coli clinical isolate producing both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase IBC-1. Clin Microbiol Infect. 2004;10(8):757–60.
Article
CAS
Google Scholar
Laxminarayan R, Bhutta ZA. Antimicrobial resistance—a threat to neonate survival. Lancet Glob Health. 2016;4(10):e676–7.
Article
Google Scholar
Sekar R, et al. Carbapenem resistance in a rural part of southern India: Escherichia coli versus Klebsiella spp. Indian J Med Res. 2016;144(5):781.
Article
Google Scholar
Hu F-P, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016;22:S9–S14.
Article
CAS
Google Scholar
Ilyas M, et al. Frequency, susceptibility and co-existence of MBL, ESBL & AmpC positive Pseudomonas aeruginosa in tertiary care hospitals of Peshawar, KPK. In: Pakistan; 2015.
Google Scholar
Shan S, Sajid S, Ahmad K. Detection of Bla IMP gene in Metallo-β-lactamase producing isolates of imipenem resistant Pseudomonas aeruginosa; an alarming threat. Journal of Microbiology Research. 2015;5(6):175–80.
Google Scholar
Shamim S, Abbas M, Qazi MH. Prevalence of multidrug resistant Acinetobacter baumannii in hospitalized patients in Lahore. Pakistan Pakistan J Mol Med. 2015;2(1):23–8.
Google Scholar
Ameen N, et al. Imipenem resistant Pseudomonas aeruginosa: the fall of the final quarterback. Pakistan journal of medical sciences. 2015;31(3):561.
PubMed
PubMed Central
Google Scholar
Bashir D, et al. Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afr J Microbiol Res. 2011;5(2):164–72.
Google Scholar
Church D, et al. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34.
Article
Google Scholar
AL-Aali KY. Microbial profile of burn wound infections in burn patients, Taif. Saudi Arabia Archives of Clinical Microbiology. 2016;7(2).
Anwar M, et al. Phenotypic detection of Metallo-Beta-lactamases in Carbapenem resistant Acinetobacter baumannii isolated from pediatric patients in Pakistan. Journal of pathogens. 2016:2016.
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–72.
Article
CAS
Google Scholar
Safari M, et al. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi journal of biological sciences. 2015;22(4):424–9.
Article
CAS
Google Scholar
García-Fernández A, et al. An ertapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother. 2010;54(10):4178–84.
Article
Google Scholar