World Health Organization. Coronavirus disease (COVID-19) technical guidance: Infection prevention and control. Geneva: World Health Organization; 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control.
Google Scholar
World Health Organization. Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. Geneva: World Health Organization; 2014. Available from: https://apps.who.int/iris/handle/10665/112656.
Google Scholar
Hall CB. The spread of influenza and other respiratory viruses: complexities and conjectures. Clin Infect Dis. 2007;45(3):353–9.
Article
PubMed
Google Scholar
Roy CJ, Milton DK. Airborne transmission of communicable infection--the elusive pathway. N Engl J Med. 2004;350(17):1710–2.
Article
CAS
PubMed
Google Scholar
Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza a in human beings. Lancet Infect Dis. 2007;7(4):257–65.
Article
PubMed
Google Scholar
Tellier R. Aerosol transmission of influenza a virus: a review of new studies. J R Soc Interface. 2009;6(Suppl 6):S783–90.
PubMed
PubMed Central
Google Scholar
Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019;19(1):101.
Article
PubMed
PubMed Central
Google Scholar
Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16(5):335–47.
Article
CAS
PubMed
Google Scholar
Xie X, Li Y, Chwang AT, Ho PL, Seto WH. How far droplets can move in indoor environments-revisiting the Wells evaporation-falling curve. Indoor Air. 2007;17(3):211–25.
Article
CAS
PubMed
Google Scholar
Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016;44(9 Suppl):S102–8.
Article
PubMed
PubMed Central
Google Scholar
Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, et al. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One. 2010;5(11):e15100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JR, Tang JW, Pankhurst L, Klein N, Gant V, Lai KM, et al. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling. J Hosp Infect. 2015;91(3):278–81.
Article
CAS
PubMed
Google Scholar
Shaw K. The 2003 SARS outbreak and its impact on infection control practices. Public Health. 2006;120(1):8–14.
Article
PubMed
Google Scholar
World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected. Geneva: World Health Organization; 2020. Available from: https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125.
Google Scholar
Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Geneva: World Health Organization; 2020. p. 16–24. Available from: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).
Cheng VCC, Wong SC, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, et al. Escalating infection control response to the rapidly evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020:1–24.
Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. Jama. 2020.
Schwartz KL, Murti M, Finkelstein M, Leis J, Fitzgerald-Husek A, Bourns L, et al. Lack of COVID-19 transmission on an international flight2020 24 2020. Available from: https://www.cmaj.ca/content/192/7/E171/tab-e-letters#lack-of-covid-19-transmission-on-an-international-flight.
Google Scholar
Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis. 2017;17(12):e420–e8.
Article
PubMed
Google Scholar
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng K, Poon BH, Kiat Puar TH, Shan Quah JL, Loh WJ, Wong YJ, et al. COVID-19 and the risk to health care workers: a case report. Ann Intern Med. 2020;172(11):766–767.
Wong SC, Kwong RT, Wu TC, Chan JWM, Chu MY, Lee SY, et al. Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong. J Hosp Infect. 2020;105(2):119–127.
Schwierzeck V, Konig JC, Kuhn J, Mellmann A, Correa-Martinez CL, Omran H, et al. First reported nosocomial outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a pediatric dialysis unit. Clin Infect Dis. 2020;ciaa491. [published online ahead of print, 2020 Apr 27].
COVID-19 Scientific Advisory Group. COVID risk to healthcare workers. Alberta Health Services, Calgary, Alberta. May 4 2020. Available from: https://www.albertahealthservices.ca/assets/info/ppih/if-ppih-covid-19-hcw-risk-rapid-review.pdf.
Faridi S, Niazi S, Sadeghi K, Naddafi K, Yavarian J, Shamsipour M, et al. A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci Total Environ. 2020;725:138401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020;582(7813):557–56.
Chia PY, Coleman KK, Tan YK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11(1):2800.
Santarpia JL, Rivera DN, Herrara V, Morwitzer MJ, Creager H, Santarpia GW, et al. Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center. medRxiv; 2020. https://doi.org/10.1101/2020.03.23.20039446.
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564.
Committee on Animal Models for Testing Interventions Against Aerosolized Bioterrorism Agents. Overcoming challenges to develop countermeasures against aerosolized bioterrorism agents: appropriate use of animal models. In: (US) NRC. Washington, DC: National Academies Press (US); 2006.
Google Scholar
May KR. The collision nebulizer: description, performance and application. J Aerosol Sci. 1973;4(3):235–43.
Article
CAS
Google Scholar
Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A. 2020;117(22):11875–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int. 2020;139:105730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR. Airborne or droplet precautions for health workers treating COVID-19?. J Infect Dis. 2020;jiaa189. [published online ahead of print, 2020 Apr 16].
Lu J, Gu J, Li K, et al. COVID-19 Outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg Infect Dis. 2020;26(7):1628–1631.
Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335–7.
Article
PubMed
PubMed Central
Google Scholar
Freeland AL, Vaughan GH Jr, Banerjee SN. Acute gastroenteritis on cruise ships - United States, 2008-2014. MMWR Morb Mortal Wkly Rep. 2016;65(1):1–5.
Article
PubMed
Google Scholar
Bert F, Scaioli G, Gualano MR, Passi S, Specchia ML, Cadeddu C, et al. Norovirus outbreaks on commercial cruise ships: a systematic review and new targets for the public health agenda. Food Environ Virol. 2014;6(2):67–74.
Moriarty LF, Plucinski MM, Marston BJ, Kurbatova EV, Knust B, Murray EL, et al. Public health responses to COVID-19 outbreaks on cruise ships-worldwide, February-March 2020. MMWR Morb Mortal Wkly Rep:2020.
Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk Factors of Healthcare Workers with Corona Virus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China. Clin Infect Dis. 2020.
Martuzzi M, Tickner JA. editors. Chapter 3, The precautionary principle: a legal and policy history. Copenhagen: World Health Organization; 2004.
Seto WH, Tsang D, Yung RW, Ching TY, Ng TK, Ho M, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet. 2003;361(9368):1519–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le DH, Bloom SA, Nguyen QH, Maloney SA, Le QM, Leitmeyer KC, et al. Lack of SARS transmission among public hospital workers, Vietnam. Emerg Infect Dis. 2004;10(2):265–8.
Article
PubMed
Google Scholar
Liu JW, Lu SN, Chen SS, Yang KD, Lin MC, Wu CC, et al. Epidemiologic study and containment of a nosocomial outbreak of severe acute respiratory syndrome in a medical center in Kaohsiung, Taiwan. Infect Control Hosp Epidemiol. 2006;27(5):466–72.
Article
PubMed
Google Scholar
Chen M, Leo YS, Ang B, Heng BH, Choo P. The outbreak of SARS at Tan tock Seng hospital--relating epidemiology to control. Ann Acad Med Singap. 2006;35(5):317–25.
PubMed
Google Scholar
Centers for Disease Control and Prevention. Cluster of severe acute respiratory syndrome cases among protected health-care workers - Toronto, Canada, April 2003. Washington, DC: Centers for Disease Control and Prevention; 2003. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5219a1.htm.
Twu SJ, Chen TJ, Chen CJ, Olsen SJ, Lee LT, Fisk T, et al. Control measures for severe acute respiratory syndrome (SARS) in Taiwan. Emerg Infect Dis. 2003;9(6):718–20.
Article
PubMed
PubMed Central
Google Scholar
Ofner-Agostini M, Gravel D, McDonald LC, Lem M, Sarwal S, McGeer A, et al. Cluster of cases of severe acute respiratory syndrome among Toronto healthcare workers after implementation of infection control precautions: a case series. Infect Control Hosp Epidemiol. 2006;27(5):473–8.
Article
PubMed
Google Scholar
Chen YC, Chen PJ, Chang SC, Kao CL, Wang SH, Wang LH, et al. Infection control and SARS transmission among healthcare workers, Taiwan. Emerg Infect Dis. 2004;10(5):895–8.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. SARS outbreak in the Philippines. Wkly Epidemiol Rec. 2003;78(22):189–92.
Google Scholar
Krein SL, Mayer J, Harrod M, Weston LE, Gregory L, Petersen L, et al. Identification and characterization of failures in infectious agent transmission precaution practices in hospitals: a qualitative study. JAMA Intern Med. 2018;178(8):1016–57.
Article
PubMed
PubMed Central
Google Scholar
Mumma JM, Durso FT, Ferguson AN, Gipson CL, Casanova L, Erukunuakpor K, et al. Human factors risk analyses of a doffing protocol for Ebola-level personal protective equipment: mapping errors to contamination. Clin Infect Dis. 2018;66(6):950–8.
Article
PubMed
PubMed Central
Google Scholar
Moore D, Gamage B, Bryce E, Copes R, Yassi A, Group BCIRPS. Protecting health care workers from SARS and other respiratory pathogens: organizational and individual factors that affect adherence to infection control guidelines. Am J Infect Control. 2005;33(2):88–96.
Article
PubMed
PubMed Central
Google Scholar
Yassi A, Moore D, Fitzgerald JM, Bigelow P, Hon CY, Bryce E, et al. Research gaps in protecting healthcare workers from SARS and other respiratory pathogens: an interdisciplinary, multi-stakeholder, evidence-based approach. J Occup Environ Med. 2005;47(1):41–50.
Article
PubMed
PubMed Central
Google Scholar
Jefferson T, Del Mar CB, Dooley L, Ferroni E, Al-Ansary LA, Bawazeer GA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2011;7:CD006207.
Google Scholar
Smith JD, MacDougall CC, Johnstone J, Copes RA, Schwartz B, Garber GE. Effectiveness of N95 respirators versus surgical masks in protecting health care workers from acute respiratory infection: a systematic review and meta-analysis. CMAJ. 2016;188(8):567–74.
Offeddu V, Yung CF, Low MSF, Tam CC. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and Meta-analysis. Clin Infect Dis. 2017;65(11):1934–42.
Article
PubMed
Google Scholar
Radonovich LJ Jr, Simberkoff MS, Bessesen MT, Brown AC, Cummings DAT, Gaydos CA, et al. N95 respirators vs medical masks for preventing influenza among health care personnel: a randomized clinical trial. JAMA. 2019;322(9):824–33.
Foo CC, Goon AT, Leow YH, Goh CL. Adverse skin reactions to personal protective equipment against severe acute respiratory syndrome--a descriptive study in Singapore. Contact Dermatitis. 2006;55(5):291–4.
Article
PubMed
PubMed Central
Google Scholar
Tan KT, Greaves MW. N95 acne. Int J Dermatol. 2004;43(7):522–3.
Article
PubMed
PubMed Central
Google Scholar
Donovan J, Kudla I, Holness LD, Skotnicki-Grant S, Nethercott JR. Skin reactions following use of N95 facial masks. Dermatitis. 2007;18(2):104.
Article
Google Scholar
Donovan J, Skotnicki-Grant S. Allergic contact dermatitis from formaldehyde textile resins in surgical uniforms and nonwoven textile masks. Dermatitis. 2007;18(1):40–4.
Article
CAS
PubMed
Google Scholar
Zhu JH, Lee YJ, Wang DY, Lee H. Effects of long-duration wearing of N95 respirator and surgical facemask: a pilot study. J Lung Pulm Respir Res. 2014;1(4):97–100.
Rebmann T, Carrico R, Wang J. Physiologic and other effects and compliance with long-term respirator use among medical intensive care unit nurses. Am J Infect Control. 2013;41(12):1218–23.
Article
PubMed
PubMed Central
Google Scholar
Tong PS, Kale AS, Ng K, Loke AP, Choolani MA, Lim CL, et al. Respiratory consequences of N95-type mask usage in pregnant healthcare workers-a controlled clinical study. Antimicrob Resist Infect Control. 2015;4:48.
Article
PubMed
PubMed Central
Google Scholar
Tokars JI, McKinley GF, Otten J, Woodley C, Sordillo EM, Caldwell J, et al. Use and efficacy of tuberculosis infection control practices at hospitals with previous outbreaks of multidrug-resistant tuberculosis. Infect Control Hosp Epidemiol. 2001;22(7):449–55.
Article
CAS
PubMed
Google Scholar