Singh DK, Tóth R, Gácser A. Mechanisms of pathogenic Candida Species to evade the host complement attack. Front Cell Infect Microbiol. 2020;10:94.
Article
CAS
Google Scholar
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An update on Candida tropicalis based on basic and clinical approaches. Front Microbiol. 2017;8:1927.
Article
Google Scholar
Dermawan J, Ghosh S, Keating MK, Gopalakrishna KV, Mukhopadhyay S. Candida pneumonia with severe clinical course, recovery with antifungal therapy and unusual pathologic findings: a case report. Medicine. 2018;97:e9650.
Article
Google Scholar
Cuervo G, Garcia-Vidal C, Puig-Asensio M, Vena A, Meije Y, Fernandez-Ruiz M, et al. Echinocandins compared to fluconazole for Candidemia of a urinary tract source: a propensity score analysis. Clin Infect Dis. 2017;64:1374–9.
Article
CAS
Google Scholar
Kauffman CA, Vazquez JA, Sobel JD, Gallis HA, Kinsey DS, Karchmer AW, et al. Prospective multicenter surveillance study of Funguria in hospitalized patients. The National Institute for Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis. 2000;30:14–8.
Article
CAS
Google Scholar
Bassetti M, Peghin M, Carnelutti A, Righi E, Merelli M, Ansaldi F, et al. Clinical characteristics and predictors of mortality in cirrhotic patients with candidemia and intra-abdominal candidiasis: a multicenter study. Intensive Care Med. 2017;43:509–18.
Article
Google Scholar
Castanheira M, Messer SA, Rhomberg PR, Pfaller MA. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagn Microbiol Infect Dis. 2016;85:200–4.
Article
CAS
Google Scholar
Fan X, Xiao M, Liao K, Kudinha T, Wang H, Zhang L, et al. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014):molecular epidemiology and clinical azole consumption. Front Microbiol. 2017;8:464.
PubMed
PubMed Central
Google Scholar
Arastehfar A, Daneshnia F, Hafez A, Khodavaisy S, Najafzadeh MJ, Charsizadeh A, et al. Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Med Mycol. 2020;58:766–73.
Article
Google Scholar
Fan X, Xiao M, Zhang D, Huang JJ, Wang H, Hou X, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect. 2019;25:885–91.
Article
CAS
Google Scholar
Ksiezopolska E, Gabaldon T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes. 2018;9:461.
Article
Google Scholar
Rocha MF, Bandeira SP, Alencar LP, Melo LM, Sales JA, Paiva M, et al. Azole resistance in Candida albicans from animals: highlights on efflux pump activity and gene overexpression. Mycoses. 2017;60:462–8.
Article
CAS
Google Scholar
Vasicek EM, Berkow EL, Flowers SA, Barker KS, Rogers PD. UPC2 is universally essential for azole antifungal resistance in Candida albicans. Eukaryot Cell. 2014;13:933–46.
Article
Google Scholar
Clinical and Laboratory Standards Institute. M60. Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed. Wayne: Clinical and Laboratory Standards Institute; 2017.
Google Scholar
Saikat P, Shreya S, Arunaloke C, Ghosh AK. Selection and evaluation of appropriate reference genes for RTqPCR based expression analysis in Candida tropicalis following azole treatment. Sci Rep. 2020;10:1972.
Article
Google Scholar
Ladero M, Blanco M, Calderon M, Lucio L, Martin Y, Blanco M, et al. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast. 2019;36:107–15.
Article
Google Scholar
Maria J, Marco J, Laura C, Diana G, Nancy E, Eine E, et al. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 2019;12:783–94.
Article
Google Scholar
Kux L. Draft Guidance for Industry on Drug interaction studies-study design, data analysis, implications for dosing, and labeling recommendations; availability. Fed Reg. 2012;77:9946.
Google Scholar
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Luis OZ, et al. Clinical practice guideline for the management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1-50.
Article
Google Scholar
Jin L, Cao Z, Wang Q, Wang Y, Wang X, Chen H, et al. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infect Dis. 2018;18:162.
Article
Google Scholar
Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY antifungal surveillance program: results for Candida species From 1997–2016. Open Forum Infect Dis. 2019;6(Suppl 1):79–94.
Article
Google Scholar
Scudeller L, Bassetti M, Concia E, Corrao S, Cristini F, Rosa FG, et al. MEDical wards Invasive Candidiasis ALgorithms (MEDICAL): consensus proposal for management. Eur J Intern Med. 2016;34:45–53.
Article
Google Scholar
Tissot F, Agrawal S, Pagano L, Petrikkos G, Groll AH, Skiada A, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 2017;102:433–44.
Article
Google Scholar
Martin-Loeches I, Antonelli M, Cuenca-Estrella M, Dimopoulos G, Einav S, Waele JJ, et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med. 2019;45:789–805.
Article
Google Scholar
Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemoth. 2013;68:778–85.
Article
CAS
Google Scholar
Alizadeh F, Khodavandi A, Zalakian S. Quantitation of ergosterol content and gene expression profile of ERG11gene in fluconazole-resistant Candida albicans. Curr Med Mycol. 2017;3:13–9.
CAS
PubMed
PubMed Central
Google Scholar
Feng W, Yang J, Xi Z, Qiao Z, Lv Y, Wang Y, et al. Mutations and/or overexpressions of ERG4 and ERG11 genes in clinical azoles-resistant isolates of Candida albicans. Microb Drug Resist. 2017;23:563–70.
Article
CAS
Google Scholar
Jiang C, Ni Q, Dong D, Zhang L, Li Z, Tian Y, et al. The role of UPC2 gene in azole-resistant Candida tropicalis. Mycopathologia. 2016;181:833–8.
Article
CAS
Google Scholar
Lohberger A, Coste AT, Sanglard D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell. 2014;13:127–42.
Article
CAS
Google Scholar
Sarah MP, Bassel A, Sandra W, Deken XD, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother. 2005;49:1745–52.
Article
Google Scholar
Choi MJ, Won EJ, Shin JH, Kim SH, Lee WG, Kim MN, et al. Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrob Agents Chemother. 2016;60:3653–61.
Article
Google Scholar
Shi G, Shao J, Wang T, Wu D, Wang C. Mechanism of berberine-mediated fluconazole-susceptibility enhancement in clinical fluconazole-resistant Candida tropicalis isolates. Biomed Pharmacother. 2017;93:709–12.
Article
CAS
Google Scholar
Barros PP, Rossoni RD, Ribeiro F, Junqueira JC, Jorge AO. Temporal profile of biofilm formation, gene expression and virulence analysis in Candida albicans strains. Mycopathologia. 2017;182:285–95.
Article
Google Scholar