Skip to main content

An outbreak investigation of Burkholderia cepacia infections related with contaminated chlorhexidine mouthwash solution in a tertiary care center in Turkey

Abstract

Background

We report a nosocomial outbreak caused by Burkholderia cepacia that occurred among six patients admitted in the medical and surgical intensive care unit between 04 March 2019 and 02 April 2019 in Istanbul, Turkey.

Methods

The outbreak investigation was launched on 11 March 2019 five days after the detection of B. cepacia in four different patients. We defined potential reservoirs and started environmental screening. We sampled the liquid solutions used in patient care activities. Pulse-field gel electrophoresis (PFGE) was performed to determine the genetic relatedness of environmental and patient samples.

Results

Burkholderia cepacia was isolated in tracheal aspiration cultures of six patients. Three out of six patients developed healthcare-associated pneumoniae due to B. cepacia. Environmental cultures in the ICUs revealed B. cepacia growth in 2% chlorhexidine-gluconate mouthwash solution that been used in the colonized patients as well as in samples obtained from the unused products. PFGE revealed the patient and a specific batch of chlorhexidine mouthwash solution samples had a 96% similarity.

Conclusion

Contamination of medical solutions used in critical patient care could cause outbreaks and should be detected early by infection control teams.

Graphic abstract

Introduction

Burkholderia cepacia is an aerobic, gram-negative, non-fermentative bacteria frequently isolated from water and solutions [1]. It can survive in fluids, antiseptic solutions, and the healthcare environment for long durations. Burkholderia cepacia complex is significant in cystic fibrosis patients, patients with structural lung diseases, and immunocompromised patients [2]. A variety of sources causes B. cepacia outbreaks.

Previous reports have demonstrated transmission from contaminated liquids or moist environmental surfaces in hospital settings [3,4,5]. Here we describe a nosocomial outbreak caused by Burkholderia cepacia between 04 March and 02 April 2019 in a tertiary care center in Istanbul, Turkey. The outbreak occurred in patients admitted in intensive care units (ICU) with and without structural lung disease. We report the identification of the source as contaminated 2% chlorhexidine (CHG) mouthwash solution.

Methods

Setting

The hospital is a tertiary care center with 659 beds in total, which have 80 ICU beds. The outbreak occurred in the intensive care unit. The ICU is a third level facility, giving care to surgical, trauma, and immunosuppressed patient populations.

The infection prevention and control (IPC) team performs active surveillance of hospital-acquired infections (HAI) in all ICUs in the hospital. IPC nurses and doctors work with the ICU and microbiology team when detecting HAIs. Centers for Disease Control (CDC) definitions were used for HAI diagnosis [6]. Clinical and active surveillance cultures are checked daily, and the IPC team runs daily rounds in the ICU. IPC runs the outbreak investigation in cooperation with the microbiology department.

Outbreak investigation and environmental sampling

The outbreak investigation was launched on 11 March 2019 five days after the detection of B. cepacia in respiratory cultures of four different patients. These patients were discussed in the infection control committee. The IPC team performed a field investigation. We defined potential reservoirs and started environmental screening. We sampled the liquid solutions used in patient care, such as chlorhexidine soap, chlorhexidine mouth wash, and ultrasound gel, intubation, ventilation, and oxygenation equipment. We took samples from sink drains in the patient care rooms. Hands of 6 healthcare workers (HCW) were cultured.

Cultures collected from patients and environment, inoculated on plates and incubated at 36 °C for 18–24 h. Blood, MacConkey and chocolate agar base were used, selective agar plates were not used for B. cepacia. Growth of colonies was detected according to the manufacturer’s instructions, and colony species were identified by the VITEK-MS® system (bioMérieux SA, Marcy l’Etoile, France). Antibiotic susceptibility were determined by disk diffusion test and gradient strip test (E-test, bioMérieux).

Pulsed-field gel electrophoresis (PFGE) was done according to the CDC protocol (7). Dendrograms and cluster analysis were generated using the Bionumerics 7.5 (Applied Maths) program with the Unweighted Pair Group Method with the mathematical average (UPGMA) method and the Dice similarity coefficient. Salmonella braenderup ATCC BAA664 isolate was used for molecular size indicator [7].

Results

Information regarding the patient charactersitcs is presented in Table 1

Patient 1: A male patient who is 75 years-old with chronic renal disease and myasthenia gravis transferred from a long-term care facility with respiratory failure on 21 February 2019. On day eleven of admission, B. cepacia was isolated from a tracheal aspiration sample. The patient was diagnosed with ventilator-associated pneumonia (VAP) due to B. cepacia, and treatment with piperacillin–tazobactam was started and continued for ten days. The patient improved, but the patient deceased on admission day 55.

Table 1 Characteristics of patients with B. cepacia colonization/infection

Patient 2: A 85 years-old male patient with Alzheimer's was admitted with community-acquired pneumonia to another healthcare facility. Later he was transferred to the ICU. Respiratory samples grew B. cepacia on day 21 of admission. The patient did not fulfill the VAP criteria. On admission day 80, the patient developed VAP due to Acinetobacter baumannii and died on day 95.

Patient 3: A 86 years-old female patient with sigmoid adenocarcinoma underwent re-laparotomy due to an anastomose leak. The patient was diagnosed with intraabdominal sepsis and treated with piperacillin–tazobactam and vancomycin. On admission day two, B. cepacia was detected in the tracheal aspirate. Antimicrobial treatment for intraabdominal sepsis was streamlined to piperacillin–tazobactam and levofloxacin. The patient recovered from intraabdominal infection and was discharged to the surgical ward on admission day 23 and eventually discharged from the hospital on day 25.

Patient 4: A male patient who is 69 years-old with diabetes was admitted with subacute anterior myocardial infarction to the intensive care unit. He underwent left anterior descendent artery stent placement. The patient was intubated due to respiratory insufficiency. On admission day eight, B. cepacia was isolated from respiratory cultures, and the patient was diagnosed with VAP. Cefepime was started then de-escalated to levofloxacin. He received 14 days of antimicrobial treatment. The patient died on admission day 45.

Patient 5: A male patient who is 73 years-old with chronic obstructive pulmonary disease and chronic renal failure was admitted to the ICU on 24 January 2019. The patient was diagnosed with community-acquired pneumonia and treated with ceftriaxone and clindamycin. B. cepacia was isolated from tracheal aspirate on admission day 60. Levofloxacin treatment was started and continued for ten days. The patient was deceased on admission day 130.

Patient 6: A male patient who is 77 years-old, operated on 21 January 2019 for cervical spinal stenosis. The patient was admitted to ICU with septic shock on 05 February 2019. On day 56 of admission to ICU, B. cepacia was isolated from deep tracheal aspirate culture. The patient died on the same day. Retrospective examination showed death was not related to a HAI due to B. cepacia.

The six patients' timeline between admission, detection of B. cepacia, and discharge/death is displayed in Fig. 1.

Fig. 1
figure 1

Timeline of six patients who were admitted to the intensive care unit and had Burkholderia cepacia detected in respiratory specimens during inpatient treatment. Environmental sampling: a mouthwash solution of colonized patients and remaining environmental samples, b mouthwash solutions of all patients in the unit and unopened stock solutions in the unit, c different batches of unopened mouthwash solutions in the storage area

In the beginning of the outbreak investigation, we took 34 environmental samples and six hand cultures from HCWs. B. cepacia was detected in opened mouthwash products in the unit. Once the growth detected in the mouthwash products, additional samples were taken from unopened products in the ICU and central storage units. In total we took 20 additional samples from mouthwash solutions. B. cepacia was also detected in unopened products. Contamination was detected in all samples (17/17) of a specific batch (G05) of the mouthwash solution. In total, 17/20 of opened and unopened products showed growth. Three unopened solutions without growth had a different batch number (G11). The G05 batch was in use on 24 February 2019 (during the preceding two weeks). The remaining 14 environmental cultures showed no growth other than Pseudomonas aeruginosa and Serratia marcescens from sinks. Cultures from hands of the HCW showed no significant growth.

Overall, six patients became colonized, and three of them developed VAP. The median age of colonized patients was 76 (25–75%: 73.5–86). The median time to colonization from admission to ICU was 17.5 days (25–75%: 7.7.5–48.25).

Figure 2 shows the PFGE dendrograms of B. cepacia isolates from the patients and the mouthwash solutions. The PFGE detected five pulsotypes out of 20 B. cepacia isolates. There was a 90% similarity between the two clusters. The isolates in the second cluster had a 96% similarity.

Fig. 2
figure 2

Pulsed-field gel electrophoresis profiles SpeI-digested chromosomal DNA and dendograms from computer-assisted analysis of the profiles. MBC8, 11, 14, 15, 17, and 20 are isolated from the patients’ respiratory samples, and the remaining isolates are from mouthwash solutions

Interventions and measures taken

We contacted the neighboring hospitals using the same product. They reported no additional B. cepacia cases. We recommended to cohort all colonized patients in the same section of the unit. The use of the product was stopped throughout the institution on the 10th day of the outbreak. IPC monitored the hand hygiene compliance of the unit and gave feedback to HCWs during the outbreak. Infection prevention strategies to prevent HAIs was reminded to the staff. The last case with B. cepacia colonization was identified 29 days after the outbreak onset, and no further clusters were identified after discontinuing the contaminated solution.

Discussion

The investigation revealed a batch of unopened 2% CHG mouthwash solution was the source of this B. cepacia outbreak. The PFGE revealed the same strain (90% similarity) that caused the outbreak. The infection control committee took corrective action by the hospital-wide withdrawal of the product. Since the discontinuation of the contaminated solution, we did not detect additional B. cepacia infection or colonization. The microbiologic investigation of this outbreak was initiated after the third patient was diagnosed with B. cepacia colonization.

Information regarding the role of B. cepacia in healthcare-associated infections in Turkey is scarce. Dizbay et al. reported B. cepacia infection incidence as 0.26 per 1000 admissions, which accounted for 0.7% of all nosocomial isolates. The most common type of infection was pneumonia. The crude mortality rate of patients with B. cepacia complex was 53.8% [8].

B. cepacia is clinically relevant in patients with structural lung disease and immunosuppressive patients. If colonized, these patients may develop challenging to treat infections, mostly pulmonary infection. Given its nature of broad antimicrobial and antiseptic resistance, it can survive in medical solutions [9]. It can also cause outbreaks in non-immunocompromised patients due to contaminated medical equipment and solutions [4, 10]. Peterson et al. investigated a clonal outbreak of B. cepacia pneumonia in patients without cystic fibrosis. They identified the sink as the source which might have contaminated the respiratory care items [11]. Several studies have reported contamination during manufacturing and after opening the product [2, 12,13,14,15]. Shaban et al. reported a nationwide outbreak of B. cepacia bacteremia in 2017. They isolated the 11 isolates of B. cepacia in 4 hospitals and identified the point source as the contaminated gel packs in sachets used in the sterile ultrasound probe covers [16]. A recent outbreak report showed that contaminated analgesic gel used in urological procedures caused B. cepacia bacteremia in nine patients [17].

Conclusion

Contaminated solutions used in the patient care activities could cause significant outbreaks. This outbreak emphasizes the potential consequences of B. cepacia in critical patients, particularly in intensive care units. Prompt and in-depth epidemiological investigation of such clusters is significant for identifying the source of and controlling the outbreak.

Availability of data and materials

The data is available upon request.

Abbreviations

CHG:

Chlorhexidine

ICU:

Intensive care unit

HAI:

Hospital-acquired infections

IPC:

Infection prevention and control

CDC:

Centers for Disease Control

HCW:

Healthcare worker

PFGE:

Pulsed-field gel electrophoresis

UPGMA:

Unweighted Pair Group Method with the mathematical average

VAP:

Ventilator associated pneumonia

B. cepacia :

Burkholderia cepacia

References

  1. Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol. 2005;3:144.

    Article  CAS  Google Scholar 

  2. Ahn Y, Kim JM, Lee Y-J, LiPuma J, Hussong D, Marasa B, et al. Effects of extended storage of chlorhexidine gluconate and benzalkonium chloride solutions on the viability of Burkholderia cenocepacia. J Microbiol Biotechnol. 2017;27:2211–20.

    Article  CAS  Google Scholar 

  3. Becker SL, Berger FK, Feldner SK, Karliova I, Haber M, Mellmann A, et al. Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Eurosurveillance. 2018;23:43.

    Article  Google Scholar 

  4. Mangram A, Jarvis WR. Nosocomial Burkholderia cepacia outbreaks and pseudo-outbreaks. Infect Control Hosp Epidemiol. 1996;17:718–20.

    Article  CAS  Google Scholar 

  5. Reboli AC, Koshinski R, Arias K, Marks-Austin K, Stieritz D, Stull TL. An outbreak of Burkholderia cepacia lower respiratory tract infection associated with contaminated albuterol nebulization solution. Infect Control Hosp Epidemiol. 1996;17:741–3.

    Article  CAS  Google Scholar 

  6. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control Elsevier. 2008;36:309–32.

    Article  Google Scholar 

  7. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233.

    Article  CAS  PubMed Central  Google Scholar 

  8. Dizbay M, Tunccan OG, Sezer BE, Aktas F, Arman D. Nosocomial Burkholderia cepacia infections in a Turkish university hospital: a five-year surveillance. J Infect Dev Ctries. 2009;3:273–7.

    CAS  PubMed  Google Scholar 

  9. Tapouk FA, Nabizadeh R, Mirzaei N, Jazani NH, Yousefi M, Hasanloei MAV. Comparative efficacy of hospital disinfectants against nosocomial infection pathogens. Antimicrobial Resistance & Infection Control. BioMed Central. 2020;9:1–7.

    Google Scholar 

  10. Vonberg R-P, Gastmeier P. Hospital-acquired infections related to contaminated substances. J Hosp Infect. 2007;65:15–23.

    Article  PubMed Central  Google Scholar 

  11. Peterson AE, Chitnis AS, Xiang N, Scaletta JM, Geist R, Schwartz J, et al. Clonally related Burkholderia contaminans among ventilated patients without cystic fibrosis. Am J Infect Control. 2013;41:1298–300.

    Article  PubMed Central  Google Scholar 

  12. Dolan SA, Dowell E, LiPuma JJ, Valdez S, Chan K, James JF. An outbreak of Burkholderia cepacia complex associated with intrinsically contaminated nasal spray. Infect Control Hosp Epidemiol. 2011;32:804–10.

    Article  PubMed Central  Google Scholar 

  13. Jacobson M, Wray R, Kovach D, Henry D, Speert D, Matlow A. Sustained endemicity of Burkholderia cepacia complex in a pediatric institution, associated with contaminated ultrasound gel. Infect Control Hosp Epidemiol. 2006;27:362–6.

    Article  PubMed Central  Google Scholar 

  14. Gravel-Tropper D, Sample ML, Oxley C, Toye B, Woods DE, Garber GE. Three-year outbreak of pseudobacteremia with Burkholderia cepacia traced to a contaminated blood gas analyzer. Infect Control Hosp Epidemiol. 1996;17:737–40.

    Article  CAS  PubMed Central  Google Scholar 

  15. van Laer F, Raes D, Vandamme P, Lammens C, Sion JP, Vrints C, et al. An outbreak of Burkholderia cepacia with septicemia on a cardiology ward. Infect Control Hosp Epidemiol. 1998;19:112–3.

    Article  Google Scholar 

  16. Shaban RZ, Maloney S, Gerrard J, Collignon P, Macbeth D, Cruickshank M, et al. Outbreak of health care-associated Burkholderia cenocepacia bacteremia and infection attributed to contaminated sterile gel used for central line insertion under ultrasound guidance and other procedures. Am J Infect Control. 2017;45:954–8.

    Article  Google Scholar 

  17. Zou Q, Li N, Liu J, Li X, Wang Z, Ai X, et al. Investigation of an outbreak of Burkholderia cepacia infection caused by drug contamination in a tertiary hospital in China. Am J Infect Control Elsevier. 2020;48:199–203.

    Article  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

H.B., G.A.G., F.G., N.P., G.C., S.S., F.B., and V.K. writing and editing the manuscript. H.B., F.G., and V.K. treatment of patients. H.B., G.A.G., E.S., N.P., S.S., F.B., and G.C.: outbreak investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hüseyin Bilgin.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

The study was conducted according to ethical guidelines approved by the Marmara University School of Medicine. There were no experiments on human participants. The personal data was anonymized and in compliance with local data protection policy.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, H., Altınkanat Gelmez, G., Bayrakdar, F. et al. An outbreak investigation of Burkholderia cepacia infections related with contaminated chlorhexidine mouthwash solution in a tertiary care center in Turkey. Antimicrob Resist Infect Control 10, 143 (2021). https://doi.org/10.1186/s13756-021-01004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13756-021-01004-8

Keywords