Ramadan AA, Abdelaziz NA, Amin MA, Aziz RK. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep. 2019;9:4224. https://doi.org/10.1038/s41598-019-39730-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. 2018;115:E3463–70.
Article
CAS
Google Scholar
Lynch III JP, Clark NM, Zhanel GG. Escalating antimicrobial resistance among enterobacteriaceae: focus on Carbapenemases. Expert Opin Pharmacother 2021.
Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215:S28–36. https://doi.org/10.1093/infdis/jiw282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotb S, Lyman M, Ismail G, Abd El Fattah M, Girgis SA, Etman A, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare–associated Infections Surveillance Data, 2011–2017. Antimicrob Resist Infect Control 2020;9:1–9.
Nordmann P, Couard J-P, Sansot D, Poirel L. Emergence of an autochthonous and community-acquired NDM-1–producing Klebsiella pneumoniae in Europe. Clin Infect Dis. 2012;54:150–1.
Article
Google Scholar
Pan F, Tian D, Wang B, Zhao W, Qin H, Zhang T, et al. Fecal carriage and molecular epidemiology of carbapenem-resistant Enterobacteriaceae from outpatient children in Shanghai. BMC Infect Dis. 2019;19:1–6.
Article
Google Scholar
Loqman S, Soraa N, Diene SM, Rolain J-M. Dissemination of Carbapenemases (OXA-48, NDM and VIM) Producing Enterobacteriaceae Isolated from the Mohamed VI University Hospital in Marrakech. Morocco Antibiotics. 2021;10:492.
Article
CAS
Google Scholar
Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3:15–21. https://doi.org/10.1177/2049936115621709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis. 2019;69:S521–8.
Article
CAS
Google Scholar
El-Kholy A, El-Mahallawy HA, Elsharnouby N, Aziz MA, Helmy AM, Kotb R. Landscape of multidrug-resistant gram-negative infections in Egypt: survey and literature review. Infect Drug Resist. 2021;14:1905.
Article
Google Scholar
Snyder J, Munier G, Johnson C. Direct comparison of the BD phoenix system with the MicroScan WalkAway system for identification and antimicrobial susceptibility testing of Enterobacteriaceae and nonfermentative gram-negative organisms. J Clin Microbiol. 2008;46:2327–33.
Article
CAS
Google Scholar
Abdel-Baky RM, Ali MA, Abuo-Rahma GE-DAA, AbdelAziz N. Inhibition of urease enzyme production and some other virulence factors expression in Proteus mirabilis by N-acetyl cysteine and dipropyl disulphide. In: Donelli G, editor. Advances in microbiology, infectious diseases and public health: Volume 7. Cham: Springer International Publishing; 2017. p. 99–113.
CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th Edition (M07-Ed11); Clinical and Laboratory Standards Institute: Wayne, PA, USA. 2018.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Ninth Informational Supplement (M100-S29); Clinical and Laboratory Standards Institute: Wayne, PA, USA. 2019.
Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.
Article
CAS
PubMed
Google Scholar
Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59:321–2. https://doi.org/10.1093/jac/dkl481.
Article
CAS
PubMed
Google Scholar
World Health O. Global action plan on antimicrobial resistance. Geneva: World Health Organization; 2015. p. 2015.
Google Scholar
Peacock S, Ashley E, Shetty N, Patel J. Harnessing alternative sources of antimicrobial resistance data to support surveillance in low-resource settings. 2019.
Gandra S, Alvarez-Uria G, Turner P, Joshi J, Limmathurotsakul D, van Doorn HR. Antimicrobial resistance surveillance in low-and middle-income countries: progress and challenges in eight South Asian and Southeast Asian countries. Clin Microbiol Rev. 2020;33:e00048-e119.
Article
CAS
Google Scholar
El-Kholy AA, Girgis SA, Shetta MA, Abdel-Hamid DH, Elmanakhly AR. Molecular characterization of multidrug-resistant Gram-negative pathogens in three tertiary hospitals in Cairo, Egypt. Eur J Clin Microbiol Infect Dis 2020:1–6.
Jayatilleke K. Challenges in implementing surveillance tools of high-income countries (HICs) in low middle income countries (LMICs). Curr Treat Opt Infect Dis 2020:1–11.
See I, Lessa FC, ElAta OA, Hafez S, Samy K, El-Kholy A, et al. Incidence and pathogen distribution of healthcare-associated infections in pilot hospitals in Egypt. Infect Control Hosp Epidemiol. 2013;34:1281–8.
Article
Google Scholar
Talaat M, El-Shokry M, El-Kholy J, Ismail G, Kotb S, Hafez S, et al. National surveillance of health care–associated infections in Egypt: developing a sustainable program in a resource-limited country. Am J Infect Control. 2016;44:1296–301.
Article
Google Scholar
Singh-Moodley A, Perovic O. Antimicrobial susceptibility testing in predicting the presence of carbapenemase genes in Enterobacteriaceae in South Africa. BMC Infect Dis. 2016;16:1–10.
Article
Google Scholar
Kamel NA, El-tayeb WN, El-Ansary MR, Mansour MT, Aboshanab KM. Phenotypic screening and molecular characterization of carbapenemase-producing Gram-negative bacilli recovered from febrile neutropenic pediatric cancer patients in Egypt. PLoS ONE. 2018;13: e0202119. https://doi.org/10.1371/journal.pone.0202119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osama D, El-Mahallawy H, Mansour MT, Hashem A, Attia AS. Molecular characterization of carbapenemase-producing Klebsiella pneumoniae isolated from Egyptian pediatric cancer patients including a strain with a rare gene-combination of β-lactamases. Infect Drug Resist. 2021;14:335.
Article
Google Scholar
Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulall AK. The emergence of carbapenemase bla NDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. European J Clin Microbiol Infect Dis 2020:1–9.
Hassuna NA, AbdelAziz RA, Zakaria A, Abdelhakeem M. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.01375.
Article
PubMed
PubMed Central
Google Scholar
Saperston KN, Shapiro DJ, Hersh AL, Copp HL. A comparison of inpatient versus outpatient resistance patterns of pediatric urinary tract infection. J Urol. 2014;191:1608–13.
Article
Google Scholar
Wagner JL, Rhodes NJ, Scheetz MH, Bosso JA, Goff DA, Rybak MJ, et al. Opportunities for antimicrobial stewardship among carbapenem-treated patients in 18 North American hospitals. Int J Antimicrob Agents. 2020;55:105970.
Article
CAS
Google Scholar
Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between antibiotic consumption and the rate of carbapenem-resistant Gram-negative bacteria from China based on 153 tertiary hospitals data in 2014. Antimicrob Resist Infect Control. 2018;7:1–7.
Article
Google Scholar
World Health O. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Geneva: World Health Organization; 2017. p. 2017.
Google Scholar
Ghaith DM, Zafer MM, Said HM, Elanwary S, Elsaban S, Al-Agamy MH, et al. Genetic diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis. 2020;39:583–91.
Article
CAS
Google Scholar
Ramadan Mohamed E, Ali MY, Waly NG, Halby HM, El-Baky A, Mahmoud R. The Inc FII plasmid and its contribution in the transmission of blaNDM-1 and blaKPC-2 in Klebsiella pneumoniae in Egypt. Antibiotics. 2019;8:266.
Article
Google Scholar
Hashem H, Hanora A, Abdalla S, Shaeky A, Saad A. Dissemination of metallo-β-lactamase in Pseudomonas aeruginosa isolates in Egypt: mutation in blaVIM-4. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica. 2017;125:499–505. https://doi.org/10.1111/apm.12669.
Article
CAS
PubMed
Google Scholar
Abaza AF, El Shazly SA, Selim HSA, Aly GSA. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt. Pol J Microbiol. 2017;66:297–308. https://doi.org/10.5604/01.3001.0010.4855.
Article
PubMed
Google Scholar
El-Kholy AA, Elanany MG, Sherif MM, Gad MA. High prevalence of VIM, KPC, and NDM expression among surgical site infection pathogens in patients having emergency surgery. Surg Infect. 2018;19:629–33.
Article
Google Scholar
El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The first Egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among Carbapenem-resistant K pneumoniae Clinical Isolates Genotyped by BOX-PCR. Infect Drug Resist. 2020;13:1237.
Article
CAS
Google Scholar
Khalil MA, Elgaml A, El-Mowafy M. Emergence of multidrug-resistant New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae in Egypt. Microb Drug Resist. 2017;23:480–7.
Article
CAS
Google Scholar
Ragheb SM, Tawfick MM, El-Kholy AA, Abdulall AK. Phenotypic and genotypic features of klebsiella pneumoniae harboring carbapenemases in Egypt: OXA-48-like carbapenemases as an investigated model. Antibiotics. 2020;9:852.
Article
CAS
Google Scholar
Sherif MM, Elkhatib WF, Khalaf WS, Elleboudy NS, Abdelaziz NA. Multidrug Resistant Acinetobacter baumannii Biofilms: Evaluation of Phenotypic–Genotypic Association and Susceptibility to Cinnamic and Gallic Acids. Frontiers in microbiology 2021;12.
Mairi A, Pantel A, Sotto A, Lavigne J-P, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2018;37:587–604. https://doi.org/10.1007/s10096-017-3112-7.
Article
CAS
PubMed
Google Scholar
Suay-García B, Pérez-Gracia MT. Present and future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel). 2019;8:122. https://doi.org/10.3390/antibiotics8030122.
Article
CAS
Google Scholar
Annavajhala MK, Gomez-Simmonds A, Uhlemann A-C. Multidrug-resistant Enterobacter cloacae complex emerging as a global Diversifying Threat. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.00044.
Article
PubMed
PubMed Central
Google Scholar
Dooling KL, Kandeel A, Hicks LA, El-Shoubary W, Fawzi K, Kandeel Y, et al. Understanding antibiotic use in Minya District, Egypt: physician and pharmacist prescribing and the factors influencing their practices. Antibiotics (Basel). 2014;3:233–43. https://doi.org/10.3390/antibiotics3020233.
Article
CAS
Google Scholar
Elden NMK, Nasser HA, Alli A, Mahmoud N, Shawky MA, Ibrahim AAEA, et al. Risk factors of antibiotics self-medication practices among University Students in Cairo, Egypt. Open Access Macedonian J Med Sci. 2020;8:7–12. https://doi.org/10.3889/oamjms.2020.3323.
Article
Google Scholar
Yan Z, Zhou Y, Du M, Bai Y, Liu B, Gong M, et al. Prospective investigation of carbapenem-resistant Klebsiella pneumonia transmission among the staff, environment and patients in five major intensive care units, Beijing. J Hosp Infect. 2019;101:150–7.
Article
Google Scholar
Lübbert C, Lippmann N, Busch T, Kaisers UX, Ducomble T, Eckmanns T, et al. Long-term carriage of Klebsiella pneumoniae carbapenemase–2-producing K pneumoniae after a large single-center outbreak in Germany. Am J Infect Control. 2014;42:376–80.
Article
Google Scholar
CLSI. Analysis and presentation of cumulative antimicrobial susceptibility test data, 4th Edition (M39-A4); Clinical and Laboratory Standards Institute: Wayne, PA, USA. 2014.