Apley MD. Clinical evidence for individual animal therapy for papillomatous digital dermatitis (hairy heel wart) and infectious bovine pododermatitis (foot rot). Vet Clin North Am Food Anim Pract. 2015;31:81–95. https://doi.org/10.1016/j.cvfa.2014.11.009.
Article
PubMed
Google Scholar
Gaffney D, Foster T. Chloramphenicol acetyltransferases determined by R plasmids from gram-negative bacteria. J Gen Microbiol. 1978;109:351–8.
Article
CAS
Google Scholar
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28:519–42. https://doi.org/10.1016/j.femsre.2004.04.001.
Article
PubMed
CAS
Google Scholar
Kucerova Z, Hradecka H, Nechvatalova K, Nedbalcova K. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolates from clinical outbreaks of porcine respiratory diseases. Vet Microbiol. 2011;150:203–6. https://doi.org/10.1016/j.vetmic.2011.01.016.
Article
PubMed
CAS
Google Scholar
Chang SK, Lo DY, Wei HW, Kuo HC. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections. J Vet Med Sci. 2015;77:59–65. https://doi.org/10.1292/jvms.13-0281.
Article
PubMed
CAS
Google Scholar
Geng Y, Wang KY, Huang XL, Chen DF, Li CW, Ren SY, et al. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound Emerg Dis. 2012;59:369–75. https://doi.org/10.1111/j.1865-1682.2011.01280.x.
Article
PubMed
CAS
Google Scholar
Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, et al. Genetic characterization of a novel blaDIM-2-carrying megaplasmid p12969-DIM from clinical Pseudomonas putida. J Antimicrob Chemother. 2016;71:909–12. https://doi.org/10.1093/jac/dkv426.
Article
PubMed
CAS
Google Scholar
de Jong A, Thomas V, Simjee S, Moyaert H, El Garch F, Maher K, et al. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: the VetPath study. Vet Microbiol. 2014;172:202–15. https://doi.org/10.1016/j.vetmic.2014.04.008.
Article
PubMed
CAS
Google Scholar
Dayao DA, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol. 2014;171:232–5. https://doi.org/10.1016/j.vetmic.2014.03.014.
Article
PubMed
CAS
Google Scholar
Kim E, Aoki T. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol. 1996;40:665–9.
Article
CAS
PubMed
Google Scholar
Arcangioli MA, Leroy-Setrin S, Martel JL, Chaslus-Dancla E. A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typhimurium DT104. FEMS Microbiol Lett. 1999;174:327–32.
Article
CAS
PubMed
Google Scholar
Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science. 2013;341:1514–7. https://doi.org/10.1126/science.1240578.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cloeckaert A, Baucheron S, Chaslus-Dancla E. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. Antimicrob Agents Chemother. 2001;45:2381–2. https://doi.org/10.1128/AAC.45.8.2381-2382.2001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Zhang W, Wang J, Wu C, Shen Z, Fu X, et al. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China. Antimicrob Agents Chemother. 2012;56:1485–90. https://doi.org/10.1128/AAC.05827-11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol. 2010;76:5321–6. https://doi.org/10.1128/AEM.00323-10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Couto N, Belas A, Rodrigues C, Schwarz S, Pomba C. Acquisition of the fexA and cfr genes in Staphylococcus pseudintermedius during florfenicol treatment of canine pyoderma. J Glob Antimicrob Resist. 2016;7:126–7. https://doi.org/10.1016/j.jgar.2016.08.008.
Article
PubMed
Google Scholar
Liu H, Wang Y, Wu C, Schwarz S, Shen Z, Jeon B, et al. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother. 2012;67:322–5. https://doi.org/10.1093/jac/dkr481.
Article
PubMed
CAS
Google Scholar
Tao W, Lee MH, Wu J, Kim NH, Kim JC, Chung E, et al. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl Environ Microbiol. 2012;78:6295–301. https://doi.org/10.1128/AEM.01154-12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gabida M, Gombe NT, Chemhuru M, Takundwa L, Bangure D, Tshimanga M. Foodborne illness among factory workers, Gweru, Zimbabwe, 2012: a retrospective cohort study. BMC Res Notes. 2015;8:493. https://doi.org/10.1186/s13104-015-1512-2.
Article
PubMed
PubMed Central
Google Scholar
Lai J, Wang Y, Shen J, Li R, Han J, Foley SL, et al. Unique class 1 integron and multiple resistance genes co-located on IncHI2 plasmid is associated with the emerging multidrug resistance of Salmonella Indiana isolated from chicken in China. Foodborne Pathog Dis. 2013;10:581–8. https://doi.org/10.1089/fpd.2012.1455.
Article
PubMed
CAS
Google Scholar
da Silva GC, Rossi CC, Santana MF, Langford PR, Bosse JT, Bazzolli DMS. p518, a small floR plasmid from a south American isolate of Actinobacillus pleuropneumoniae. Vet Microbiol. 2017;204:129–32. https://doi.org/10.1016/j.vetmic.2017.04.019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anantham S, Harmer CJ, Hall RM. p39R861-4, a type 2 a/C2 plasmid carrying a segment from the a/C1 plasmid RA1. Microb Drug Resist. 2015;21:571–6. https://doi.org/10.1089/mdr.2015.0133.
Article
PubMed
CAS
Google Scholar
Davis GS, Price LB. Recent research examining links among Klebsiella pneumoniae from food, food animals, and human extraintestinal infections. Curr Environ Health Rep. 2016;3:128–35. https://doi.org/10.1007/s40572-016-0089-9.
Article
PubMed
CAS
Google Scholar
Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4. https://doi.org/10.3389/fcimb.2018.00004.
Article
PubMed
PubMed Central
Google Scholar
Kikuchi N, Kagota C, Nomura T, Hiramune T, Takahashi T, Yanagawa R. Plasmid profiles of Klebsiella pneumoniae isolated from bovine mastitis. Vet Microbiol. 1995;47:9–15.
Article
CAS
PubMed
Google Scholar
Brisse S, Duijkeren E. Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Vet Microbiol. 2005;105:307–12. https://doi.org/10.1016/j.vetmic.2004.11.010.
Article
PubMed
CAS
Google Scholar
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682–707. https://doi.org/10.1128/CMR.05035-11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ying J, Wang H, Bao B, Zhang Y, Zhang J, Zhang C, et al. Molecular variation and horizontal gene transfer of the homocysteine methyltransferase gene mmuM and its distribution in clinical pathogens. Int J Biol Sci. 2015;11:11–21. https://doi.org/10.7150/ijbs.10320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arcangioli MA, Leroy-Setrin S, Martel JL, Chaslus-Dancla E. Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella typhimurium strains implicates definitive phage type (DT) 104. J Med Microbiol. 2000;49:103–10. https://doi.org/10.1099/0022-1317-49-1-103.
Article
PubMed
CAS
Google Scholar
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 27th informational supplement. In: Document; 2017. p. M100–S27.
Google Scholar
Wasyl D, Hoszowski A, Zajac M, Szulowski K. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front Microbiol. 2013;4:221. https://doi.org/10.3389/fmicb.2013.00221.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roussel S, Felix B, Vingadassalon N, Grout J, Hennekinne JA, Guillier L, et al. Staphylococcus aureus strains associated with food poisoning outbreaks in France: comparison of different molecular typing methods, including MLVA. Front Microbiol. 2015;6:882. https://doi.org/10.3389/fmicb.2015.00882.
Article
PubMed
PubMed Central
Google Scholar
Yi H, Xi Y, Liu J, Wang J, Wu J, Xu T, et al. Sequence analysis of pKF3-70 in Klebsiella pneumoniae: probable origin from R100-like plasmid of Escherichia coli. PLoS One. 2010;5:e8601. https://doi.org/10.1371/journal.pone.0008601.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics. 2007;23:673–9. https://doi.org/10.1093/bioinformatics/btm009.
Article
PubMed
CAS
Google Scholar
Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView. Bioinformatics. 2010;26:3125–6. https://doi.org/10.1093/bioinformatics/btq588.
Article
PubMed
PubMed Central
CAS
Google Scholar
Remm M, Storm CE, Sonnhammer EL. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001;314:1041–52. https://doi.org/10.1006/jmbi.2000.5197.
Article
PubMed
CAS
Google Scholar
Hu L, Zhong Q, Tu J, Xu Y, Qin Z, Parsons C, et al. Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagn Microbiol Infect Dis. 2013;75:373–6. https://doi.org/10.1016/j.diagmicrobio.2013.01.006.
Article
PubMed
CAS
Google Scholar
Xu T, Ying J, Yao X, Song Y, Ma P, Bao B, et al. Identification and characterization of two novel Bla(KLUC) resistance genes through large-scale resistance plasmids sequencing. PLoS One. 2012;7:e47197. https://doi.org/10.1371/journal.pone.0047197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rice LB, Carias LL, Bonomo RA, Shlaes DM. Molecular genetics of resistance to both ceftazidime and beta-lactam-beta-lactamase inhibitor combinations in Klebsiella pneumoniae and in vivo response to beta-lactam therapy. J Infect Dis. 1996;173:151–8.
Article
CAS
PubMed
Google Scholar
Li XS, Wang GQ, Du XD, Cui BA, Zhang SM, Shen JZ. Antimicrobial susceptibility and molecular detection of chloramphenicol and florfenicol resistance among Escherichia coli isolates from diseased chickens. J Vet Sci. 2007;8:243–7.
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Alarcon C, Miranda CD, Singer RS, Lopez Y, Rojas R, Bello H, et al. Detection of the floR gene in a diversity of florfenicol resistant gram-negative bacilli from freshwater salmon farms in Chile. Zoonoses Public Health. 2010;57:181–8. https://doi.org/10.1111/j.1863-2378.2009.01243.x.
Article
PubMed
CAS
Google Scholar
Gordon L, Cloeckaert A, Doublet B, Schwarz S, Bouju-Albert A, Ganiere JP, et al. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother. 2008;62:65–71. https://doi.org/10.1093/jac/dkn166.
Article
PubMed
CAS
Google Scholar
Zhang A, Yang Y, Wang H, Lei C, Xu C, Guan Z, et al. Prevalence of sulfonamide and Florfenicol resistance genes in Escherichia Coli isolated from yaks (Bos Grunniens) and herdsmen in the Tibetan pasture. J Wildl Dis. 2015;51:626–33. https://doi.org/10.7589/2014-09-234.
Article
PubMed
CAS
Google Scholar
Wang Y, Wang Y, Wu CM, Schwarz S, Shen Z, Zhang W, et al. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J Antimicrob Chemother. 2011;66:2521–6. https://doi.org/10.1093/jac/dkr322.
Article
PubMed
CAS
Google Scholar
He T, Shen J, Schwarz S, Wu C, Wang Y. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother. 2015;70:1031–6. https://doi.org/10.1093/jac/dku491.
Article
PubMed
CAS
Google Scholar
Alessiani A, Sacchini L, Pontieri E, Gavini J, Di Giannatale E. Molecular typing of Salmonella enterica subspecies enterica serovar Typhimurium isolated in Abruzzo region (Italy) from 2008 to 2010. Vet Ital. 2014;50:31–9. https://doi.org/10.12834/VetIt.1304.07.
Article
PubMed
Google Scholar
Cloeckaert A, Baucheron S, Flaujac G, Schwarz S, Kehrenberg C, Martel JL, et al. Plasmid-mediated florfenicol resistance encoded by the floR gene in Escherichia coli isolated from cattle. Antimicrob Agents Chemother. 2000;44:2858–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cloeckaert A, Sidi Boumedine K, Flaujac G, Imberechts H, D'Hooghe I, Chaslus-Dancla E. Occurrence of a Salmonella enterica serovar typhimurium DT104-like antibiotic resistance gene cluster including the floR gene in S. enterica serovar agona. Antimicrob Agents Chemother. 2000;44:1359–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan YS, Zong ZY, Yuan L, Du XD, Huang H, Zhong XH, et al. Complete sequence of pEC012, a multidrug-resistant IncI1 ST71 plasmid carrying Bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian Escherichia coli ST117 strain. Front Microbiol. 2016;7:1117. https://doi.org/10.3389/fmicb.2016.01117.
Article
PubMed
PubMed Central
Google Scholar
Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel Genomic Islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016;60:7216–23. https://doi.org/10.1128/AAC.01601-16.
Article
PubMed
PubMed Central
CAS
Google Scholar