JG. Emergence and dissemination of quinolone-resistant Escherichia coli in the community. %J Antimicrobial agents and chemotherapy. 1999;11.
Poirel L, Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol. 2012;3:24.
Article
Google Scholar
Hu F, Zhu D, Wang F, Wang M. Current status and trends of antibacterial resistance in China. Clin Infect Dis. 2018;67:S128–S34.
Article
Google Scholar
Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22:664–89.
Article
CAS
Google Scholar
Drlica KHH, Kerns R, et al. Quinolones:action and resistance updated. Curr Top Med Chem. 2009;9:981–98.
Article
CAS
Google Scholar
Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectrum. 2014;2(5):PLAS-0006-2013.
Robicsek ASJ, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. NatMed. 2006;12:83–8.
CAS
Google Scholar
Yamane KW. SuzukiS etal. Newplasmid-mediatedfluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51:3354–60.
Article
CAS
Google Scholar
Martinez-Martinez L PA, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351:797–9.
Rodriguez-Martinez JM, Machuca J, Cano ME, Calvo J, Martinez-Martinez L, Pascual A. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat. 2016;29:13–29.
Article
Google Scholar
Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354:12–31.
Article
CAS
Google Scholar
Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother. 2008;61:1003–6.
Article
CAS
Google Scholar
Briales A, Rodriguez-Martinez JM, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, et al. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum beta-lactamases in Spain. Int J Antimicrob Agents. 2012;39:431–4.
Article
CAS
Google Scholar
Hansen LH, Jensen LB, Sorensen HI, Sorensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007;60:145–7.
Article
CAS
Google Scholar
Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother. 2007;51:2464–9.
Article
CAS
Google Scholar
Wong MH, Kan B, Chan EW, Yan M, Chen S. IncI1 plasmids carrying various blaCTX-M genes contribute to ceftriaxone resistance in Salmonella enterica Serovar Enteritidis in China. Antimicrob Agents Chemother. 2016;60:982–9.
Article
CAS
Google Scholar
Kim SY, Lee SK, Park MS, Na HT. Analysis of the Fluoroquinolone antibiotic resistance mechanism of Salmonella enterica isolates. J Microbiol Biotechnol. 2016;26:1605–12.
Article
CAS
Google Scholar
Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, et al. ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res. 2012;40:D621–6.
Bjorkeng EK, Hjerde E, Pedersen T, Sundsfjord A, Hegstad K. ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol. 2013;195:5381–90.
Article
Google Scholar
Norman A, Hansen LH, She Q, Sorensen SJ. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid. 2008;60:59–74.
Article
CAS
Google Scholar
Wang J, Guo ZW, Zhi CP, Yang T, Zhao JJ, Chen XJ, et al. Impact of plasmid-borne oqxAB on the development of fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother. 2017;72:1293–302.
Article
CAS
Google Scholar
Machuca J, Briales A, Labrador G, Diaz-de-Alba P, Lopez-Rojas R, Docobo-Perez F, et al. Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother. 2014;69:3203–15.
Article
CAS
Google Scholar
Machuca J, Ortiz M, Recacha E, Diaz-De-Alba P, Docobo-Perez F, Rodriguez-Martinez JM, et al. Impact of AAC (6′)-Ib-cr in combination with chromosomal-mediated mechanisms on clinical quinolone resistance in Escherichia coli. J Antimicrob Chemother. 2016;71:3066–71.
Article
CAS
Google Scholar
Ni Q, Tian Y, Zhang L, Jiang C, Dong D, Li Z, et al. Prevalence and quinolone resistance of fecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli in 6 communities and 2 physical examination center populations in Shanghai, China. Diagn Microbiol Infect Dis. 2016;86:428–33.
Article
CAS
Google Scholar
Cao TT, Deng GH, Fang LX, Yang RS, Sun J, Liu YH, et al. Characterization of quinolone resistance in Salmonella enterica from farm animals in China. J Food Prot. 2017;80:1742–8.
Article
CAS
Google Scholar
Wen Y, Pu X, Zheng W, Hu G. High prevalence of plasmid-mediated quinolone resistance and IncQ plasmids carrying qnrS2 gene in Bacteria from Rivers near hospitals and aquaculture in China. PLoS One. 2016;11:e0159418.
Article
Google Scholar
Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:3582–4.
Article
CAS
Google Scholar
Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, et al. Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrob Agents Chemother. 2010;54:4219–24.
Article
CAS
Google Scholar
Wong MH, Chen S. First detection of oqxAB in Salmonella spp. isolated from food. Antimicrob Agents Chemother. 2013;57:658–60.
Article
CAS
Google Scholar
Rodriguez-Martinez JM. Diaz de Alba P, Briales a, Machuca J, Lossa M, Fernandez-Cuenca F, et al. contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2013;68:68–73.
Article
CAS
Google Scholar
Li L, Liao X, Yang Y, Sun J, Li L, Liu B, et al. Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother. 2013;68:2263–8.
Article
CAS
Google Scholar
Campos J, Mourao J, Marcal S, Machado J, Novais C, Peixe L, et al. Clinical Salmonella Typhimurium ST34 with metal tolerance genes and an IncHI2 plasmid carrying oqxAB-aac (6′)-Ib-cr from Europe. J Antimicrob Chemother. 2016;71:843–5.
Article
CAS
Google Scholar
Fang L, Li X, Li L, Li S, Liao X, Sun J, et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci Rep. 2016;6:25312.
Article
CAS
Google Scholar
Pitout JD, Wei Y, Church DL, Gregson DB. Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary health region, Canada: the emergence of aac (6′)-Ib-cr. J Antimicrob Chemother. 2008;61:999–1002.
Article
CAS
Google Scholar
Sabtcheva S, Kaku M, Saga T, Ishii Y, Kantardjiev T. High prevalence of the aac (6′)-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmids in Bulgaria. Antimicrob Agents Chemother. 2009;53:335–6.
Article
CAS
Google Scholar
Ruiz E, Rezusta A, Saenz Y, Rocha-Gracia R, Vinue L, Vindel A, et al. New genetic environments of aac (6′)-Ib-cr gene in a multiresistant Klebsiella oxytoca strain causing an outbreak in a pediatric intensive care unit. Diagn Microbiol Infect Dis. 2011;69:236–8.
Article
Google Scholar
Wong MH, Chan EW, Xie L, Li R, Chen S. IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species. Antimicrob Agents Chemother. 2016;60:6911–5.
Article
CAS
Google Scholar
Bonemann G, Stiens M, Puhler A, Schluter A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother. 2006;50:3075–80.
Article
Google Scholar
Dobiasova H, Videnska P, Dolejska M. Complete sequences of IncU plasmids harboring quinolone resistance genes qnrS2 and aac (6′)-Ib-cr in Aeromonas spp. from ornamental fish. Antimicrob Agents Chemother. 2016;60:653–7.
Article
CAS
Google Scholar
Han JE, Kim JH, Choresca CH Jr, Shin SP, Jun JW, Chai JY, et al. First description of ColE-type plasmid in Aeromonas spp. carrying quinolone resistance (qnrS2) gene. Lett Appl Microbiol. 2012;55:290–4.
Article
CAS
Google Scholar
Picao RC, Poirel L, Demarta A, Silva CS, Corvaglia AR, Petrini O, et al. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J Antimicrob Chemother. 2008;62:948–50.
Article
CAS
Google Scholar
SR. P, SM. K, N. F, SO. J. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018:31:e00088–17.
Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. MBio. 2014;5:e01801–14.
Article
CAS
Google Scholar
He DD, Zhao SY, Wu H, Hu GZ, Zhao JF, Zong ZY, et al. Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate. J Antimicrob Chemother. 2019;74:1511–6.
Article
CAS
Google Scholar
Harmer CJ, Hall RM. IS26-mediated precise excision of the IS26-aphA1a Translocatable unit. MBio. 2015;6:e01866–15.
Article
CAS
Google Scholar