O’Neill J. Review on antimicrobial resistance: antimicrobial resistance: tackling a crisis for the health and wealth of nations. London: Wellcome Trust; 2014.
Google Scholar
Adeyi O, Baris E, Jonas O, Irwin A, Berthe F, Le Gall F, et al. Drug-resistant infections: a threat to our economic future. Washington, DC: World Bank Group; 2017.
Google Scholar
World Health Organization. Global action plan on antimicrobial resistance. Geneva: WHO; 2015. p. 2017.
Google Scholar
World Health Organization. Antimicrobial resistance global report on surveillance: 2014 summary. World Health Organization; 2014.
Google Scholar
de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184.
Article
PubMed
PubMed Central
Google Scholar
Hay SI, Rao PC, Dolecek C, Day NPJ, Stergachis A, Lopez AD, et al. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 2018;16(1):78.
Article
PubMed
PubMed Central
Google Scholar
Seale AC, Hutchison C, Fernandes S, Stoesser N, Kelly H, Lowe B, et al. Supporting surveillance capacity for antimicrobial resistance: laboratory capacity strengthening for drug resistant infections in low and middle income countries. Wellcome Open Res. 2017;2:91.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. Taking a multisectoral one health approach: a tripartite guide to addressing zoonotic diseases in countries. Food & Agriculture Org.; 2019.
Google Scholar
Rousham EK, Unicomb L, Islam MA. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Proc Biol Sci. 2018;285(1876):20180332.
PubMed
PubMed Central
Google Scholar
Nadimpalli M, Delarocque-Astagneau E, Love DC, Price LB, Huynh B-T, Collard J-M, et al. Combating global antibiotic resistance: emerging one health concerns in lower-and middle-income countries. Clin Infect Dis. 2018;66(6):963–9.
Article
PubMed
Google Scholar
Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science. 2019;365(6459):eaaw1944.
Article
PubMed
CAS
Google Scholar
World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS). http://www.who.int/glass/en/. Accessed 26 Oct 2020
Ashley EA, Shetty N, Patel J, van Doorn R, Limmathurotsakul D, Feasey NA, et al. Harnessing alternative sources of antimicrobial resistance data to support surveillance in low-resource settings. J Antimicrob Chemother. 2019;74(3):541–6.
Article
CAS
PubMed
Google Scholar
Ashley EA, Recht J, Chua A, Dance D, Dhorda M, Thomas NV, et al. An inventory of supranational antimicrobial resistance surveillance networks involving low- and middle-income countries since 2000. J Antimicrob Chemother. 2018;73(7):1737–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandra S, Alvarez-Uria G, Turner P, Joshi J, Limmathurotsakul D, van Doorn HR. Antimicrobial resistance surveillance in low- and middle-income countries: progress and challenges in eight South Asian and Southeast Asian countries. Clin Microbiol Rev. 2020;33(3):e00048-19.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. Global spending on health: a world in transition. World Health Organization; 2019.
Google Scholar
Gupta I, Guin P. Communicable diseases in the South-East Asia Region of the World Health Organization: towards a more effective response. Bull World Health Organ. 2010;88(3):199–205.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. Global health estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016. World Health Organization; 2018.
Google Scholar
Atkinson K, Mabey D. The burden of communicable diseases in low‐and middle‐income countries. In: Revolutionizing tropical medicine: point‐of‐care tests, new imaging technologies and digital health; 2019. p. 1–36.
World Health Organization. World health statistics 2020: a visual summary. World Health Organization; 2020.
Google Scholar
World Health Organization. Accelerating progress on HIV, tuberculosis, malaria, hepatitis and neglected tropical diseases: a new agenda for 2016–2030. World Health Organization; 2015.
Google Scholar
Smith PC, Anell A, Busse R, Crivelli L, Healy J, Lindahl AK, et al. Leadership and governance in seven developed health systems. Health Policy. 2012;106(1):37–49.
Article
PubMed
Google Scholar
World Health Organization. Strengthening health system governance: better policies, stronger performance. World Health Organization. Regional Office for Europe; 2016.
Google Scholar
Bebell LM, Muiru AN. Antibiotic use and emerging resistance: how can resource-limited countries turn the tide? Glob Heart. 2014;9(3):347–58.
Article
PubMed
Google Scholar
Fitzgibbon JE, Wallis CL. Laboratory challenges conducting international clinical research in resource-limited settings. J Acquir Immune Defic Syndr. 2014;65(Suppl 1):S36-39.
Article
PubMed
PubMed Central
Google Scholar
Ombelet S, Ronat JB, Walsh T, Yansouni CP, Cox J, Vlieghe E, et al. Clinical bacteriology in low-resource settings: today’s solutions. Lancet Infect Dis. 2018;18(8):e248–58.
Article
PubMed
Google Scholar
Opintan JA, Newman MJ, Arhin RE, Donkor ES, Gyansa-Lutterodt M, Mills-Pappoe W. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana. Infect Drug Resist. 2015;8:379–89.
Article
PubMed
PubMed Central
Google Scholar
Dar OA, Hasan R, Schlundt J, Harbarth S, Caleo G, Dar FK, et al. Exploring the evidence base for national and regional policy interventions to combat resistance. Lancet. 2016;387(10015):285–95.
Article
PubMed
Google Scholar
Boerma T, Mathers CD. The World Health Organization and global health estimates: improving collaboration and capacity. BMC Med. 2015;13:50.
Article
PubMed
PubMed Central
Google Scholar
Jayatilleke K. Challenges in implementing surveillance tools of high-income countries (HICs) in low middle income countries (LMICs). Curr Treat Options Infect Dis. 2020;1–11.
Humphreys H. Where do out-of-hours calls to a consultant microbiologist come from? J Clin Pathol. 2009;62(8):746–8.
Article
CAS
PubMed
Google Scholar
Tucker TJ, Manyike PT. Improving the clinic-laboratory-interface in the context of HIV diagnosis, treatment, and monitoring. Curr Opin HIV AIDS. 2017;12(2):105–11.
Article
PubMed
Google Scholar
Hamer DH, Ndhlovu M, Zurovac D, Fox M, Yeboah-Antwi K, Chanda P, et al. Improved diagnostic testing and malaria treatment practices in Zambia. JAMA. 2007;297(20):2227–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polage CR, Bedu-Addo G, Owusu-Ofori A, Frimpong E, Lloyd W, Zurcher E, et al. Laboratory use in Ghana: physician perception and practice. Am J Trop Med Hyg. 2006;75(3):526–31.
Article
PubMed
Google Scholar
Mbonye AK, Magnussen P, Chandler CI, Hansen KS, Lal S, Cundill B, et al. Introducing rapid diagnostic tests for malaria into drug shops in Uganda: design and implementation of a cluster randomized trial. Trials. 2014;15:303.
Article
PubMed
PubMed Central
Google Scholar
English M, Esamai F, Wasunna A, Were F, Ogutu B, Wamae A, et al. Delivery of paediatric care at the first-referral level in Kenya. Lancet. 2004;364(9445):1622–9.
Article
PubMed
Google Scholar
Cheesbrough M. District laboratory practice in tropical countries, part 2. Cambridge: Cambridge University Press; 2006.
Book
Google Scholar
Barbe B, Verdonck K, El-Safi S, Khanal B, Teav S, Lilo Kalo JR, et al. Rapid diagnostic tests for neglected infectious diseases: case study highlights need for customer awareness and postmarket surveillance. PLoS Negl Trop Dis. 2016;10(11):e0004655.
Article
PubMed
PubMed Central
Google Scholar
Frean J, Perovic O, Fensham V, McCarthy K, von Gottberg A, de Gouveia L, et al. External quality assessment of national public health laboratories in Africa, 2002–2009. Bull World Health Organ. 2012;90(3):191-199A.
Article
PubMed
PubMed Central
Google Scholar
Andrews JR, Prajapati KG, Eypper E, Shrestha P, Shakya M, Pathak KR, et al. Evaluation of an electricity-free, culture-based approach for detecting typhoidal Salmonella bacteremia during enteric fever in a high burden, resource-limited setting. PLoS Negl Trop Dis. 2013;7(6):e2292.
Article
PubMed
PubMed Central
Google Scholar
Nathavitharana R, Coronel J, Moore DA. Solar disinfection of MODS mycobacterial cultures in resource-poor settings. PLoS ONE. 2007;2(10):e1100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chitnis V, Chitnis S, Patil S, Chitnis D. Solar disinfection of infectious biomedical waste: a new approach for developing countries. The Lancet. 2003;362(9392):1285–6.
Article
CAS
Google Scholar
Anand C, Gordon R, Shaw H, Fonseca K, Olsen M. Pig and goat blood as substitutes for sheep blood in blood-supplemented agar media. J Clin Microbiol. 2000;38(2):591–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeh E, Pinsky BA, Banaei N, Baron EJ. Hair sheep blood, citrated or defibrinated, fulfills all requirements of blood agar for diagnostic microbiology laboratory tests. PLoS ONE. 2009;4(7):e6141.
Article
PubMed
PubMed Central
CAS
Google Scholar
European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf (2017). Accessed 26 Oct 2020.
Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing. 27th edn. Wayne, PA, USA. https://clsi.org/media/1469/m100s27_sample.pdf. (2017).
Wellcome Trust. Fleming Fund launched to tackle global problem of drug-resistant infection. https://wellcome.ac.uk/press-release/fleming-fund-launched-tackle-global-problem-drug-resistantinfection.
Resistance RoA. Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance; 2016.
Mendelson M, Dar OA, Hoffman SJ, Laxminarayan R, Mpundu MM, Rottingen JA. A global antimicrobial conservation fund for low- and middle-income countries. Int J Infect Dis. 2016;51:70–2.
Article
PubMed
Google Scholar
World Health Organization. Surveillance and monitoring of Antimicrobial use and Resistance. Interagenc coordinating group on Antimicrobial Resistance. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_Surveillance_and_Monitoring_for_AMU_and_AMR_110618.pdf (2018). Accessed 26 Oct 2020.
Rempel O, Pitout JD, Laupland KB. Antimicrobial resistance surveillance systems: are potential biases taken into account? Can J Infect Dis Med Microbiol. 2011;22(4):e24-28.
Article
PubMed
PubMed Central
Google Scholar
Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99–106.
Article
PubMed
Google Scholar
Ashley EA, Dance DAB, Turner P. Grading antimicrobial susceptibility data quality: room for improvement. Lancet Infect Dis. 2018;18(6):603–4.
Article
PubMed
Google Scholar
Mayor S. First WHO antimicrobial surveillance data reveal high levels of resistance globally. British Medical Journal Publishing Group; 2018.
Book
Google Scholar
European Antimicrobial Resistance Surveillance Network (EARS-Net). https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data. Accessed 26 Oct 2020.
World Health Organization. Central Asian and eastern European surveillance of antimicrobial resistance (CAESAR). Annu Rep. 2018;2018:2017–8.
Google Scholar
ReLavra: Rede Latinoamericana de Vigilancia de la Resistencia a los Antimicrobianos. https://www.paho.org/en/topics/antimicrobialresistance/latin-american-network-antimicrobial-resistance-surveillance. Accessed 26 Oct 2020.
Hammoudi D, Moubareck CA, Kanso A, Nordmann P, Sarkis DK. surveillance of carbapenem non-susceptible gram negative strains and characterization of carbapenemases of classes a, b and d in a lebanese hospital. J Med Liban. 2015;63(2):66–73.
PubMed
Google Scholar
Felmingham D, White AR, Jacobs MR, Appelbaum PC, Poupard J, Miller LA, et al. The Alexander Project: the benefits from a decade of surveillance. J Antimicrob Chemother. 2005;56(Suppl 2):ii3–21.
Article
PubMed
CAS
Google Scholar
Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother. 2003;47(3):1017–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borg M, Scicluna E, De Kraker M, Van De Sande-Bruinsma N, Tiemersma E, Gür D, et al. Antibiotic resistance in the southeastern Mediterranean–preliminary results from the ARMed project. Eurosurveillance. 2006;11(7):11–2.
Article
CAS
PubMed
Google Scholar
Pearce J, Mann MK, Jones C, van Buschbach S, Olff M, Bisson JI. The most effective way of delivering a train-the-trainers program: a systematic review. J Contin Educ Health Prof. 2012;32(3):215–26.
Article
PubMed
Google Scholar
Gandra S, Merchant AT, Laxminarayan R. A role for private sector laboratories in public health surveillance of antimicrobial resistance. Future Medicine; 2016.
ResistanceMap. Antibiotic resistance. https://resistancemap.cddep.org/AntibioticResistance.php.
World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. World Health Organization; 2020.
Google Scholar
The World Bank. World Bank country and lending groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-andlending-groups (2020). Accessed 26 Oct 2020.
World Health Organization. WHO country cooperation strategy: Bangladesh 2014–2017. World Health Organization; 2014.
Google Scholar
Orubu ESF, Zaman MH, Rahman MT, Wirtz VJ. Veterinary antimicrobial resistance containment in Bangladesh: evaluating the national action plan and scoping the evidence on implementation. J Glob Antimicrob Resist. 2020;21:105–15.
Article
PubMed
Google Scholar
Alam MU, Rahman M, Abdullah Al M, Islam MA, Asaduzzaman M, Sarker S, et al. Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. Int J Hyg Environ Health. 2019;222(8):1068–76.
Article
PubMed
Google Scholar
Angeles LF, Islam S, Aldstadt J, Saqeeb KN, Alam M, Khan MA, et al. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Sci Total Environ. 2020;712:136285.
Article
CAS
PubMed
Google Scholar
Islam S, Urmi UL, Rana M, Sultana F, Jahan N, Hossain B, et al. High abundance of the colistin resistance gene mcr-1 in chicken gut-bacteria in Bangladesh. Sci Rep. 2020;10(1):17292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amin MB, Sraboni AS, Hossain MI, Roy S, Mozmader TAU, Unicomb L, et al. Occurrence and genetic characteristics of mcr-1-positive colistin-resistant E. coli from poultry environments in Bangladesh. J Glob Antimicrob Resist. 2020;22:546–52.
Article
PubMed
Google Scholar
Haque A, Yoshizumi A, Saga T, Ishii Y, Tateda K. ESBL-producing Enterobacteriaceae in environmental water in Dhaka, Bangladesh. J Infect Chemother. 2014;20(11):735–7.
Article
PubMed
Google Scholar
Rashid M, Rakib MM, Hasan B. Antimicrobial-resistant and ESBL-producing Escherichia coli in different ecological niches in Bangladesh. Infect Ecol Epidemiol. 2015;5:26712.
PubMed
Google Scholar
Roy PC, Shaheduzzaman M, Sultana N, Jahid IK. Comparative antibiotic sensitivity pattern of hospital and community acquired Staphylococcus aureus isolates of Jessore, Bangladesh. J Biosci Med. 2015;3(10):17.
Google Scholar
Zaman K, Rahim Z, Yunus M, Arifeen S, Baqui A, Sack D, et al. Drug resistance of Mycobacterium tuberculosis in selected urban and rural areas in Bangladesh. Scand J Infect Dis. 2005;37(1):21–6.
Article
PubMed
Google Scholar
Banu S, Mahmud AM, Rahman MT, Hossain A, Uddin MK, Ahmed T, et al. Multidrug-resistant tuberculosis in admitted patients at a tertiary referral hospital of Bangladesh. PLoS ONE. 2012;7(7):e40545.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begum S, Salam MA, Alam KhF, Begum N, Hassan P, Haq JA. Detection of extended spectrum beta-lactamase in Pseudomonas spp. isolated from two tertiary care hospitals in Bangladesh. BMC Res Notes. 2013;6:7.
Article
PubMed
PubMed Central
Google Scholar
Rahman M, Islam H, Ahmed D, Sack RB. Emergence of multidrug-resistant Salmonella Gloucester and Salmonella typhimurium in Bangladesh. J Health Popul Nutr. 2001;19(3):191–8.
CAS
PubMed
Google Scholar
Sack RB, Rahman M, Yunus M, Khan EH. Antimicrobial resistance in organisms causing diarrheal disease. Clin Infect Dis. 1997;24(Supplement_1):S102–5.
Article
CAS
PubMed
Google Scholar
Chowdhury S, Parial R. Antibiotic susceptibility patterns of bacteria among urinary tract infection patients in Chittagong, Bangladesh. SMU Med J. 2015;2(1):114–26.
Google Scholar
Urmi UL, Nahar S, Rana M, Sultana F, Jahan N, Hossain B, et al. Genotypic to phenotypic resistance discrepancies identified involving β-lactamase genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in uropathogenic Klebsiella pneumoniae. Infect Drug Resist. 2020;13:2863.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks WA, Breiman RF, Goswami D, Hossain A, Alam K, Saha SK, et al. Invasive pneumococcal disease burden and implications for vaccine policy in urban Bangladesh. Am J Trop Med Hyg. 2007;77(5):795–801.
Article
PubMed
Google Scholar
Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Antimicrobial resistance trends of Escherichia coli bloodstream isolates: a population-based study, 1998–2007. J Antimicrob Chemother. 2009;64(1):169–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Islam MA, Amin MB, Roy S, Asaduzzaman M, Islam MR, Navab-Daneshmand T, et al. Fecal colonization with multidrug-resistant E. coli among healthy infants in rural Bangladesh. Front Microbiol. 2019;10:640.
Article
PubMed
PubMed Central
Google Scholar
Faruque SM, Chowdhury N, Kamruzzaman M, Ahmad QS, Faruque AS, Salam MA, et al. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg Infect Dis. 2003;9(9):1116–22.
Article
PubMed
PubMed Central
Google Scholar
Saha SK, Baqui AH, Darmstadt GL, Ruhulamin M, Hanif M, El Arifeen S, et al. Invasive Haemophilus influenzae type B diseases in Bangladesh, with increased resistance to antibiotics. J Pediatr. 2005;146(2):227–33.
Article
PubMed
Google Scholar
Nahar A, Anwar S, Miah MRA. Association of biofilm formation with antimicrobial resistance among the Acinetobacter species in a tertiary care hospital in Bangladesh. J Med. 2013;14(1):28–32.
Article
Google Scholar
Urmi UL, Jahan N, Nahar S, Rana M, Sultana F, Hossain B, et al. Gram-positive uropathogens: empirical treatment and emerging antimicrobial resistance. Biomed Res. 2019;4:1–4.
Google Scholar
AMR surveillance in Brazil: The information system and data managment-Health Services Surveillance and Monitoring Management General Management of Technology in Health Services Brazilian Health Regulatory Agency GVIMS/GGTES/ANVISA (Sólo inglés). https://www.paho.org/en/node/58108. Accessed 8 Jan 2021.
Rossi F. The challenges of antimicrobial resistance in Brazil. Clin Infect Dis. 2011;52(9):1138–43.
Article
PubMed
Google Scholar
Amaral WJP, Costa TB, Ribeiro RPS, Cardoso AM. The scenario of bacterial infections in a university hospital in Goiânia/GO: main microorganisms and multidrug-resistant profiles. Rev LAES & HAES. 2015;228(1):12–4.
Google Scholar
Loureiro RJ, Roque F, Rodrigues AT, Herdeiro MT, Ramalheira E. The use of antibiotics and bacterial resistance: brief notes on their evolution. Rev Port Saúde Púb. 2016;34(1):77–84.
Google Scholar
Basso ME, Pulcinellii RSR, Aquino ARC, Santos KF. Prevalence of bacterial infections in patients admitted to an intensive care unit (ICU). Rev Bras Anal Clin. 2016;48(4):383–8.
Google Scholar
Ministry of Health and Family Welfare. NATIONAL POLICY FOR CONTAINMENT OF ANTIMICROBIAL RESISTANCE INDIA. Directorate General of Health Services. 2011. https://main.mohfw.gov.in/sites/default/files/3203490350abpolicy%281%29.pdf.
ICMR. AMRSN Network. http://iamrsn.icmr.org.in/index.php/amrsn/amrsn-network. Accessed 26 Oct 2020.
National council of disease control. National Programme on AMR Containment. Available from: https://ncdc.gov.in/index1.php?lang=1&level=2&sublinkid=384&lid=344. Accessed 26 Oct 2020.
Ministry of Health and Family Welfare. National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017–2021. https://ncdc.gov.in/WriteReadData/l892s/File645.pdf (2017). Accessed 26 Oct 2020.
Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purohit MR, Lindahl LF, Diwan V, Marrone G, Lundborg CS. High levels of drug resistance in commensal E. coli in a cohort of children from rural central India. Sci Rep. 2019;9(1):6682. https://doi.org/10.1038/s41598-019-43227-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saharan VV, Verma P, Singh AP. High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquac Res. 2020;51(3):1200–10. https://doi.org/10.1111/are.14471.
Article
CAS
Google Scholar
Patel A, Jeyasekaran G, Jeyashakila R, Anand T, Wilwet L, Pathak N, et al. Prevalence of antibiotic resistant Salmonella spp. strains in shrimp farm source waters of Nagapattinam region in South India. Mar Pollut Bull. 2020;155:111171.
Article
CAS
PubMed
Google Scholar
Puzari M, Sharma M, Chetia P. Emergence of antibiotic resistant Shigella species: a matter of concern. J Infect Public Health. 2018;11(4):451–4.
Article
PubMed
Google Scholar
Taneja N. Changing epidemiology of shigellosis and emergence of ciprofloxacin-resistant shigellae in India. J Clin Microbiol. 2007;45(2):678–9.
Article
PubMed
Google Scholar
Dutta S, Ghosh A, Ghosh K, Dutta D, Bhattacharya SK, Nair GB, et al. Newly emerged multiple-antibiotic-resistant Shigella dysenteriae type 1 strains in and around Kolkata, India, are clonal. J Clin Microbiol. 2003;41(12):5833–4.
Article
PubMed
PubMed Central
Google Scholar
Jain PA, Kulkarni RD, Dutta S, Ganavali AS, Kalabhavi AS, Shetty PC, et al. Prevalence and antimicrobial profile of Shigella isolates in a tertiary care hospital of North Karnataka: a 12-year study. Indian J Med Microbiol. 2020;38(1):101–8.
Article
PubMed
Google Scholar
Shahid M, Malik A, Sheeba. Multidrug-resistant Pseudomonas aeruginosa strains harbouring R-plasmids and AmpC β-lactamases isolated from hospitalised burn patients in a tertiary care hospital of North India. FEMS Microbiol Lett. 2003;228(2):181–6. https://doi.org/10.1016/S0378-1097(03)00756-0.
Article
CAS
PubMed
Google Scholar
Pan U, Jain A, Gubert J, Kumari B. Antibiotic care, sensitivity trends of pseudomonas endophthalmitis in a tertiary eye ophthalmol, center in South India: a 12-year retrospective study. Indian J Ophthalmol. 2020;68:627–31.
Article
PubMed
PubMed Central
Google Scholar
Khan M, Stapleton F, Summers S, Rice SA, Willcox MDP. Antibiotic resistance characteristics of Pseudomonas aeruginosa isolated from keratitis in Australia and India. Antibiotics. 2020;9:600.
Article
CAS
PubMed Central
Google Scholar
Pragasam AK, Veeraraghavan B, Nalini E, Anandan SKK. An update on antimicrobial resistance and the role of newer antimicrobial agents for Pseudomonas aeruginosa. Indian J Med Microbiol. 2018;36:303–16.
Article
PubMed
Google Scholar
Kalal BS, Chandran SP, Yoganand R, Nagaraj S. Molecular characterization of carbapenem-resistant Acinetobacter baumannii strains from a tertiary care center in South India. Infectio. 2020;24(1):27–34.
Article
Google Scholar
John AO, Paul H, Vijayakumar S, Anandan S, Sudarsan T, Abraham OCBV. Mortality from acinetobacter infections as compared to other infections among critically ill patients in South India: a prospective cohort study. Indian J Med Microbiol. 2020;38:24–31.
Article
PubMed
Google Scholar
Vijayakumar S, Wattal C, Oberoi JK, Bhattacharya S, Vasudevan K, Anandan S, et al. Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring bla OXA-23, bla OXA-420 and bla NDM-1 genes using a hybrid-assembly approach. Access Microbiol. 2020;2(8):140.
Article
CAS
Google Scholar
Vijayakumar S, Mathur P, Kapil A, Das BK, Ray P, Gautam V, Sistla S, Parija SC, Walia K, Ohri VC, Anandan S, Subramani K, Ramya IVB. No Molecular characterization & epidemiology of carbapenem-resistant Acinetobacter baumannii collected across India. Indian J Med Res. 2019;149:240–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandra S, Joshi J, Trett A, Lamkang A, Laxminarayan R. Scoping report on antimicrobial resistance in India—key findings AMR scoping report. Cent Dis Dyn Econ Policy. 2017; https://cddep.org/wp-content/uploads/2017/11/AMR-INDIA-SCOPING-REPORT.pdf
National AMR Surveillance Network. 2018. AMR annual report 2020. National Center for Disease Control, New Delhi, India. https://ncdc.gov.in/index1.php?lang=1&level=2&sublinkid=393&lid=349. Accessed 1 Jan 2021
Hammoudi D, Moubareck CA, Aires J, Adaime A, Barakat A, Fayad N, Suleiman M. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-non-susceptible Enterobacteriaceae in 10 hospitals over a one-year period. Int J Infect Dis. 2014;29:139–44.
Article
CAS
PubMed
Google Scholar
Baroud Á, Dandache I, Araj GF, Wakim R, Kanj S, Kanafani Z, Khairallah M, Sabra A, Shehab M, Dbaibo G, Matar GM. Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents. 2013;41(1):75–9.
Article
CAS
PubMed
Google Scholar
Daoud Z, Hobeika E, Choucair A, Rohban R. Isolation of the first metallo-β-lactamase producing Klebsiella pneumoniae in Lebanon. Rev Esp Quimioter. 2008;21(2):123–6.
CAS
PubMed
Google Scholar
Zarrilli R, Vitale D, Di Popolo A, Bagattini M, Daoud Z, Khan AU, Afif C, Triassi M. A plasmid-borne blaOXA-58 gene confers imipenem resistance to Acinetobacter baumannii isolates from a Lebanese hospital. Antimicrob Agents Chemother. 2008;52(11):4115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghnieh RA, Musharrafieh UM, Husni RN, Abboud E, Haidar M, Abboud E, Abou Shakra D. E. coli, K. pneumoniae and K. oxytoca community-acquired infections susceptibility to cephalosporins and other antimicrobials in Lebanon. Lebanese Med J. 2014;103(1151):1–6.
Google Scholar
Tokajian S, Haddad D, Andraos R, Hashwa F, Araj G. Toxins and antibiotic resistance in Staphylococcus aureus isolated from a major hospital in Lebanon. ISRN Microbiol. 2011;2011:812049.
Article
PubMed
PubMed Central
CAS
Google Scholar
El-Najjar NG, Farah MJ, Hashwa FA, Tokajian ST. Antibiotic resistance patterns and sequencing of class I integron from uropathogenic Escherichia coli in Lebanon. Lett Appl Microbiol. 2010;51(4):456–61.
Article
CAS
PubMed
Google Scholar
Moghnieh R, Estaitieh N, Mugharbil A, Jisr T, Abdallah DI, Ziade F, Sinno L, Ibrahim A. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis. Front Cell Infect Microbiol. 2015;5:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammoudi Halat D, Moubareck CA, Sarkis DK. Heterogeneity of carbapenem resistance mechanisms among gram-negative pathogens in Lebanon: results of the first cross-sectional countrywide study. Microb Drug Resist. 2017;23(6):733–43.
Article
CAS
PubMed
Google Scholar
Moghnieh R, Siblani L, Ghadban D, El Mchad H, Zeineddine R, Abdallah D, Ziabe F, Sinno L, Kerbaj F, El Imad Z. Extensively drug-resistant Acinetobacter baumannii in a Lebanese intensive care unit: risk factors for acquisition and determination of a colonization score. J Hosp Infect. 2016;92(1):47–53.
Article
CAS
PubMed
Google Scholar
Al Atrouni A, Hamze M, Jisr T, Lemarié C, Eveillard M, Joly-Guillou ML, Kempf M. Wide spread of OXA-23-producing carbapenem-resistant Acinetobacter baumannii belonging to clonal complex II in different hospitals in Lebanon. Int J Infect Dis. 2016;52:29–36.
Article
CAS
PubMed
Google Scholar
Hammoudi D, Moubareck CA, Kanso A, Nordmann P, Sarkis DK. Surveillance of carbapenem non-susceptible gram negative strains and characterization of carbapenemases of classes A, B and D in a Lebanese hospital. Leban Med J. 2015;103(1973):1–8.
Google Scholar
Moghnieh R, Araj GF, Awad L, Daoud Z, Mokhbat JE, Jisr T, et al. A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015–2016. Antimicrob Resist Infect Control. 2019;8:41.
Article
PubMed
PubMed Central
Google Scholar
Chamoun K, Farah M, Araj G, Daoud Z, Moghnieh R, Salameh P, et al. Surveillance of antimicrobial resistance in Lebanese hospitals: retrospective nationwide compiled data. Int J Infect Dis. 2016;46:64–70.
Article
CAS
PubMed
Google Scholar
Matta R, Hallit S, Hallit R, Bawab W, Rogues AM, Salameh P. Epidemiology and microbiological profile comparison between community and hospital acquired infections: a multicenter retrospective study in Lebanon. J Infect Public Health. 2018;11(3):405–11.
Article
PubMed
Google Scholar
Moghnieh R, Araj GF, Awad L, Daoud Z, Mokhbat JE, Jisr T, Addallah D, Azar N, Irani-Hakimeh N, Balkis MM, Youssef M. A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015–2016. Antimicrob Resist Infect Control. 2019;8(1):41.
Article
PubMed
PubMed Central
Google Scholar
Sfeir M, Obeid Y, Eid C, Saliby M, Farra A, Farhat H, Mokhbat JE. Prevalence of Staphylococcus aureus methicillin-sensitive and methicillin-resistant nasal and pharyngeal colonization in outpatients in Lebanon. Am J Infect Control. 2014;42(2):160–3.
Article
PubMed
Google Scholar
Bahnan W, Hashwa F, Araj G, Tokajian S. emm typing, antibiotic resistance and PFGE analysis of Streptococcus pyogenes in Lebanon. J Med Microbiol. 2011;60(1):98–101.
Article
CAS
PubMed
Google Scholar
Cheong Y, Lim V, Jegathesan M, Suleiman A. Antimicrobial resistance in 6 Malaysian general hospitals. Med J Malaysia. 1994;49(4):317–26.
CAS
PubMed
Google Scholar
Ministry of Health Malaysia. Malaysian action plan on antimicrobial resistance (MyAP-AMR) 2017–2021. 2017.
Yu CY, Ang GY, San Chin P, Ngeow YF, Yin W-F, Chan K-G. Emergence of mcr-1-mediated colistin resistance in Escherichia coli in Malaysia. Int J Antimicrob Agents. 2016;47(6):504–5.
Article
CAS
PubMed
Google Scholar
Mohamed N, Said H, Hussin H, Abdul Rahman N, Hashim R. Carbapenem-resistant enterobactericeae: clinico-epidemiological perspective. Trop Biomed. 2018;35(2):300–7.
CAS
PubMed
Google Scholar
Malaysian One Health Antimicrobial Ressitance Report. National Survailance on Antimicrobial Resistance report 2019. https://www.imr.gov.my/MyOHAR/index.php/site/archive_rpt (2019). Accessed 26 Oct 2020.
National Department of Health (South Africa). Surveillance for antimicrobial resistance and consumption of antibiotics in South Africa. Pretoria. 2018.
National Department of Health (South Africa). Essential Drugs Programme. Primary Healthcare Standard Treatment Guideline and Essential Medicine List. 6th ed. Pretoria, 2018.
Nyasulu PS, Murray J, Perovic O, Koornhof H. Laboratory information system for reporting antimicrobial resistant isolates from academic hospitals, South Africa. J Infect Dev Ctries. 2017;11(09):705–18.
Article
PubMed
Google Scholar
Singh-Moodley A, Duse A, Naicker P, Kularatne R, Nana T, Lekalakala R, et al. Laboratory based antimicrobial resistance surveillance for Pseudomonas aeruginosa blood isolates from South Africa. J Infect Dev Ctries. 2018;12(08):616–24.
Article
CAS
PubMed
Google Scholar
Crichton H, O’Connell N, Rabie H, Whitelaw A, Dramowski A. Neonatal and paediatric bloodstream infections: pathogens, antimicrobial resistance patterns and prescribing practice at Khayelitsha District Hospital, Cape Town, South Africa. S Afr Med J. 2018;108(2):99–104.
Article
CAS
PubMed
Google Scholar
Founou RC, Founou LL, Essack SY. Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrob Resist Infect Control. 2018;7(1):134.
Article
PubMed
PubMed Central
Google Scholar
Founou RC, Founou LL, Allam M, Ismail A, Essack SY. Whole genome sequencing of extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from hospitalized patients in KwaZulu-Natal, South Africa. Sci Rep. 2019;9(1):1–11.
Article
CAS
Google Scholar
Ismail H, Lowman W, Govind C, SweSwe-Han K, Maloba M, Bamford C, et al. Surveillance and comparison of antimicrobial susceptibility patterns of ESKAPE organisms isolated from patients with bacteraemia in South Africa, 2016–2017. SAMJ S Afr Med J. 2019;109(12):934–40.
Article
CAS
PubMed
Google Scholar
Ramsamy Y, Essack SY, Sartorius B, Patel M, Mlisana KP. Antibiotic resistance trends of ESKAPE pathogens in Kwazulu-Natal, South Africa: a five-year retrospective analysis. Afr J Lab Med. 2018;7(2):1–8.
Article
CAS
Google Scholar
Swe-Han KS, Pillay M. Amikacin-resistant Acinetobacter species mediated by the aphA6 gene associated with clinical outcome at an academic complex hospital in KwaZulu-Natal Province, South Africa. SAMJ S Afr Med J. 2020;110(1):49–54.
Article
CAS
Google Scholar
Ramsamy Y, Muckart DJJ, Bruce JL, Hardcastle TC, Han KSS, Mlisana KP. Empirical antimicrobial therapy for probable v. directed therapy for possible ventilator-associated pneumonia in critically injured patients. S Afr Med J. 2016;106(2):196–200.
Article
CAS
PubMed
Google Scholar
Ramsamy Y, Muckart DJJ, Han KSS. Microbiological surveillance and antimicrobial stewardship minimise the need for ultrabroad-spectrum combination therapy for treatment of nosocomial infections in a trauma intensive care unit: an audit of an evidence-based empiric antimicrobial policy. SAMJ S Afr Med J. 2013;103(6):371–6.
Article
PubMed
Google Scholar
Ramsamy Y, Mlisana KP, Allam M, Amoako DG, Abia AL, Ismail A, et al. Genomic analysis of carbapenemase-producing extensively drug-resistant Klebsiella pneumoniae isolates reveals the horizontal spread of p18–43_01 plasmid encoding blaNDM-1 in South Africa. Microorganisms. 2020;8(1):137.
Article
CAS
PubMed Central
Google Scholar
Salmanov A. Ukrainian strategy and action plan for the prevention of Healthcare Association Infections (HAIs) and antimicrobial resistance. Int J Antibiotics & Probiotics. 2018;2018(1):00–00.
Google Scholar
Salmanov A. Surgical site infections and antibiotic resistance of causal agents in the hospitals of Kiev. Ukraine EpiNorth. 2009;10(3):120–7.
Google Scholar
Chumachenko T, Karlova T, Pivnenko S, Makhota L. Prevalence of antimicrobial resistance in Salmonella spp. strains isolated from human in Kharkiv Region, Ukraine. In: International meeting on emerging diseases and surveillance, Vienna, Austria, November 9–12, 2018, p. 54.
Martynenko A. Estimate of antibiotic resistance in common types of microorganisms in Ukraine. In: 27th European students conference: facing antimicrobial resistance—research revolution wanted! Berlin, September 28th–October 1st 2016 (2017).
Paйлян MB, Пoливяннa ЮI, Heчипopyк IA. Aнтибioтикopeзиcтeнтнicть мiкpoopгaнiзмiв, видiлeниx вiд пaцiєнтiв xipypгiчнoгo cтaцioнapy мicтa Xapкoвa. Meдицинa тpeтьoгo тиcячoлiття: Збipник тeз мiжвyзiвcькoї кoнфepeнцiї мoлoдиx вчeниx тa cтyдeнтiв (Xapкiв – 20–22 ciчня 2020p.) Xapкiв, 2019. –C. 358–360 (2020).
Дaнилoвa BB. Eтioлoгiчнa cтpyктypa тa aнтибioтикopeзиcтeнтнicть збyдникiв нoзoкoмiaльниx пнeвмoнiй y дiтeй в yмoвax BPIT / B. B. Дaнилoвa, A. M. Кoлicник, A. C. Cтapoдyб // Paцioнaльнe викopиcтaння aнтибioтикiв = Rational use of antibiotics : тeзи I Miжнapoднoгo кoнгpecy, г. Київ, 15–16 лиcтoпaдa 2018 p. C. 21–23 (2018)
Yurchuk I, Filippova E, Lischenko T, Egorova S. Resistance to antibiotics and dominant microorganisms in Zaporozhye clinical hospital of emergency and critical care medicine. Biol Sci. 2016;2:194–203.
Google Scholar
Salmanov A, Vozianov S, Kryzhevsky V, Litus O, Drozdova A, Vlasenko I. Prevalence of healthcare-associated infections and antimicrobial resistance in acute care hospitals in Kyiv, Ukarine. J Hosp Infect. 2019;102(4):431–7.
Article
CAS
PubMed
Google Scholar
Torumkuney D, Pertseva T, Bratus E, Dziublik A, Yachnyk V, Liskova A, Sopko O, Malynovska K, Morrissey I. Results from the Survey of Antibiotic Resistance (SOAR) 2014–16 in Ukraine and the Slovak Republic. J Antimicrob Chemother. 2018;73(suppl_5):v28–35.
Article
CAS
PubMed
Google Scholar
Feshchenko Y, Dzyublik A, Pertseva T, Bratus E, Dzyublik Y, Gladka G, Morrissey I, Torumkuney D. Results from the Survey of Antibiotic Resistance (SOAR) 2011–13 in Ukraine. J Antimicrobial Chemother. 2016;71(suppl_1):i63–9. https://doi.org/10.1093/jac/dkw068.
Article
Google Scholar
Torumkuney D, Bratus E, Yuvko O, Pertseva T, Morrissey I. Results from the Survey of Antibiotic Resistance (SOAR) 2016–17 in Ukraine: data based on CLSI, EUCAST (dose-specific) and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. J Antimicrob Chemother. 2020;75(Suppl 1):100–11. https://doi.org/10.1093/jac/dkaa087.
Article
CAS
Google Scholar
Pertseva T, Kireyeva T, Shtepa O. The prevalence of antimicrobial resistance of P. aeruginosa, K. pneumoniae, E. coli, A. baumanii in Ukraine. Eur Respiratory J 2014;44(Suppl 58).
Kolesnyk M, Stepanova N, Kruglikov V, Rudenko A. The etiological spectrum and antibiotic resistance pattern of bacteria causing uncomplicated urinary tract infections: a ten-year surveillance study (2005–2015). Ukr J Nephrol Dial. 2016;1(49):32–41. https://doi.org/10.31450/ukrjnd.1(49).2016.02.
Article
Google Scholar
Salmanov A, Savchenko S, Chaika K, Vitiuk A, Ruban I, Dyndar O, Zhelezov D, Vorobey L, Semeniuk LM, Hetsko NV, Tsmur OV, Suslikova LV, Nykoniuk TR, Shunko YY, Beketova HV, Manzhula LV, Kurochka VV, Abbasova ER, Tsmur O. Postpartum mastitis in the breastfeeding women and antimicrobial resistance of responsible pathogens in Ukraine: results a multicenter study. Wiad Lek. 2020;73(5):895–903.
Article
PubMed
Google Scholar
Salmanov A, Vitiuk A, Zhelezov D, Bilokon O, Kornatska A, Dyndar O, Trokhymovych OV, Bozhko N, Raksha II, Nykoniuk TR, Gorbunova O. Prevalence of postpartum endometritis and antimicrobial resistance of responsible pathogens in Ukraine: results a multicenter study (2015–2017). Wiad Lek. 2020;73(6):1177–83.
Article
PubMed
Google Scholar
Киpик ДЛ, Фiлoнeнкo ГB, Кoвaлeнкo HO, Taлaлaєв OC, Cкopoxoд IM. Aнтибioтикopeзиcтeнтнicть тa бioплiвкoyтвopювaльнi влacтивocтi штaмiв Klebsiella pneumoniae, щo видiлeнi y дiтeй з вpoджeними вaдaми cepця. Miкpoбioлoгiя i бioтexнoлoгiя. 2017;4:45–55.
Google Scholar
World Health Organization. Central Asian and Eastern European Surveillance of Antimicrobial Resistance: Annual report 2018; 2018.
World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017–2018. World Health Organization; 2018.
Google Scholar
Queenan K, Häsler B, Rushton J. A One Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents. 2016;48(4):422–7.
Article
CAS
PubMed
Google Scholar
Schnall J, Rajkhowa A, Ikuta K, Rao P, Moore CE. Surveillance and monitoring of antimicrobial resistance: limitations and lessons from the GRAM project. BMC Med. 2019;17(1):176.
Article
PubMed
PubMed Central
CAS
Google Scholar
World Health Organization. Constitution of the world health organization. World Health Organization; 1995.
Google Scholar
World Health Organization. Global health workforce network. https://www.who.int/hrh/network/en/. Accessed 26 Oct 2020.
Jasovský D, Littmann J, Zorzet A, Cars O. Antimicrobial resistance—a threat to the world’s sustainable development. Upsala J Med Sci. 2016;121(3):159–64.
Article
PubMed
PubMed Central
Google Scholar
Seale AC, Gordon NC, Islam J, Peacock SJ, Scott JAG. AMR surveillance in low and middle-income settings—a roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2017; 2.
Colson A, Cohen MA, Regmi S, Nandi A, Laxminarayan R, Macauley MK. Structured expert judgment for informing the return on investment in surveillance: the case of environmental public health tracking. Vanderbilt Owen Graduate School of Management Research Paper. 2015(2704189).
Van der Bij A, Van Dijk K, Muilwijk J, Thijsen S, Notermans D, De Greeff S, et al. Clinical breakpoint changes and their impact on surveillance of antimicrobial resistance in Escherichia coli causing bacteraemia. Clin Microbiol Infect. 2012;18(11):E466–72.
Article
PubMed
CAS
Google Scholar
Van Camp P-J, Haslam DB, Porollo A. Bioinformatics approaches to the understanding of molecular mechanisms in antimicrobial resistance. Int J Mol Sci. 2020;21(4):1363.
Article
PubMed Central
CAS
Google Scholar
Núñez-Núñez M, Navarro MD, Palomo V, Rajendran N, Del Toro M, Voss A, et al. The methodology of surveillance for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): a systematic review of publicly available information. Clin Microbiol Infect. 2018;24(2):105–9.
Article
PubMed
Google Scholar
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv. 2020;10(31):18451–68.
Article
CAS
Google Scholar
Carriço J, Sabat A, Friedrich A, Ramirez M. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Eurosurveillance. 2013;18(4):20382.
Article
PubMed
Google Scholar
Hendriksen RS, Bortolaia V, Tate H, Tyson G, Aarestrup FM, McDermott P. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242.
Article
PubMed
PubMed Central
Google Scholar
He KY, Ge D, He MM. Big data analytics for genomic medicine. Int J Mol Sci. 2017;18(2):412.
Article
PubMed Central
CAS
Google Scholar
Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012;13(9):601–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
U.S. Department of Health and Human Services. Antibiotic Resistance Threats in the United States. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-arthreats-report-508.pdf (2019). Accessed 17 Feb 2020.
Gordon N, Price J, Cole K, Everitt R, Morgan M, Finney J, et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol. 2014;52(4):1182–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drouin A, Letarte G, Raymond F, Marchand M, Corbeil J, Laviolette F. Interpretable genotype-to-phenotype classifiers with performance guarantees. Sci Rep. 2019;9(1):1–13.
Article
CAS
Google Scholar
Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat Commun. 2014;5(1):1–12.
Article
CAS
Google Scholar
Alghoribi MF, Balkhy HH, Woodford N, Ellington MJ. The role of whole genome sequencing in monitoring antimicrobial resistance: A biosafety and public health priority in the Arabian Peninsula. J Infect Public Health. 2018;11(6):784–7.
Article
PubMed
Google Scholar
Prevention ECfD, Control. Expert opinion on whole genome sequencing for public health surveillance. ECDC Stockholm; 2016.
Lv J, Deng S, Zhang L. A review of artificial intelligence applications for antimicrobial resistance. Biosafety Health. 2020.
Steinkey R, Moat J, Gannon V, Zovoilis A, Laing C. Application of artificial intelligence to the in silico assessment of antimicrobial resistance and risks to human and animal health presented by priority enteric bacterial pathogens. Can Commun Dis Rep. 2020;46(6):180–5.
Article
PubMed
PubMed Central
Google Scholar
Chowdhury AS, Lofgren ET, Moehring RW, Broschat SL. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. J Appl Microbiol. 2020;128(3):688–96.
Article
CAS
PubMed
Google Scholar
Voermans AM, Mewes JC, Broyles MR, Steuten LM. Cost-Effectiveness analysis of a procalcitonin-guided decision algorithm for antibiotic stewardship using real-world US hospital data. OMICS. 2019;23(10):508–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization. GLASS whole-genome sequencing for surveillance of antimicrobial resistance. World Health Organization; 2020.
Google Scholar
Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol. 2019;57(3):e01405-18.
Article
PubMed
PubMed Central
Google Scholar
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MT, Hopkins KL, Iredell J. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2–22.
Article
CAS
PubMed
Google Scholar
Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, De Cesare M, Piazza P. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun. 2015;6(1):1–5.
Article
CAS
Google Scholar
Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):1–5.
Article
Google Scholar
Inglis TJ, Paton TF, Kopczyk MK, Mulroney KT, Carson CF. Same-day antimicrobial susceptibility test using acoustic-enhanced flow cytometry visualized with supervised machine learning. J Med Microbiol. 2020;69(5):657–69.
Article
CAS
PubMed
Google Scholar
Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, Tyson GH, Zhao S, Davis JJ. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019;57(2):e01260-18.
Article
PubMed
PubMed Central
Google Scholar
Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet. 2020;20:356–70.
Google Scholar
Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42(D1):D581–91.
Article
CAS
PubMed
Google Scholar
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45(D1):D535–42.
Article
CAS
PubMed
Google Scholar
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research. 2016:gkw1004.
Lechowicz L, Urbaniak M, Adamus-Białek W, Kaca W. The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin. Acta Biochimica Pol. 2013;60(4):713–8.
Google Scholar
Liu Z, Deng D, Lu H, Sun J, Lv L, Li S, Peng G, Ma X, Li J, Li Z, Rong T. Evaluation of machine learning models for predicting antimicrobial resistance of Actinobacillus pleuropneumoniae from whole genome sequences. Front Microbiol. 2020;11:48.
Article
PubMed
PubMed Central
Google Scholar
Her HL, Wu YW. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics. 2018;34(13):i89-95.
Article
CAS
PubMed
PubMed Central
Google Scholar