World Health Organization (WHO). Antimicrobial resistance: Global report on surveillance. Geneva: World Health Organization (WHO); 2014.
Google Scholar
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.
Article
PubMed
Google Scholar
Witte W. Antibiotic resistance. Int J Med Microbiol. 2013;303:285–6.
Article
CAS
PubMed
Google Scholar
Cantas L, Shah SQ, Cavaco LM, Manaia C, Walsh F, Popowska M, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4:96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–87.
Article
CAS
PubMed
Google Scholar
Dupont H, Friggeri A, Touzeau J, Airapetian N, Tinturier F, Lobjoie E, et al. Enterococci increase the morbidity and mortality associated with severe intra-abdominal infections in elderly patients hospitalized in the intensive care unit. J Antimicrob Chemoth. 2011;66:2379–85.
Article
CAS
Google Scholar
Michalopoulos A, Fotakis D, Virtzili S, Vletsas C, Raftopoulou S, Mastora Z, et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Resp Med. 2008;102:407–12.
Article
Google Scholar
Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. Int J Antimicrob Ag. 2011;37:291–5.
Article
CAS
Google Scholar
World Health Organization (WHO). Report on the burden of endemic health care-associated infection worldwide. Geneva: World Health Organization (WHO); 2011.
Google Scholar
Vasudevan A, Mukhopadhyay A, Yuen EGY, Li J, Tambyah PA. Risk factors for infection/colonization caused by resistant Gram-negative bacilli in critically ill patients (An observational study of 1633 critically ill patients). Prev Med. 2012;57:S70–3.
Article
PubMed
Google Scholar
Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant Gram-negative bacteria. Antimicrob Agents Ch. 2010;54:109–15.
Article
CAS
Google Scholar
Zingg W, Holmes A, Dettenkofer M, Goetting T, Secci F, Clack L, et al. Hospital organisation, management, and structure for prevention of health-care-associated infection: A systematic review and expert consensus. Lancet Infect Dis. 2015;15:212–24.
Article
PubMed
Google Scholar
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int. 2016;2016:2475067.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th Ed. CLSI supplement M100. Wayne, Pennsylvania, United States of America: Clinical and Laboratory Standards Institute; 2020.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moussa AA, Md Nordin AF, Hamat RA, Jasni AS. High level aminoglycoside resistance and distribution of the resistance genes in Enterococcus faecalis and Enterococcus faecium from teaching hospital in Malaysia. Infect Drug Resist. 2019;12:3269–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel DS, Lee SM, Gan HM, Dykes GA, Rahman S. Genetic diversity of Enterococcus faecalis isolated from environmental, animal and clinical sources in Malaysia. J Infect Public Heal. 2017;10:617–23.
Article
Google Scholar
Wada Y, Harun A, Yean C, Zaidah A. Vancomycin-resistant Enterococcus: Issues in human health, animal health, resistant mechanisms and the Malaysian paradox. Adv Anim Vet Sci. 2019;7:1021–34.
Article
Google Scholar
Yip T, Tse K-C, Ng F, Hung I, Lam M-F, Tang S, et al. Clinical course and outcomes of single-organism Enterococcus peritonitis in peritoneal dialysis patients. Periton Dialysis Int. 2011;31:522–8.
Article
Google Scholar
Niek WK, Teh CSJ, Idris N, Thong KL, Ponnampalavanar S. Predominance of ST22-MRSA-IV clone and emergence of clones for methicillin-resistant Staphylococcus aureus clinical isolates collected from a tertiary teaching hospital over a two-year period. Jpn J Infect Dis. 2019;72:228–36.
Article
CAS
PubMed
Google Scholar
Zarizal S, Yeo CC, Faizal GM, Chew CH, Zakaria ZA, Jamil Al-Obaidi MM, et al. Nasal colonisation, antimicrobial susceptibility and genotypic pattern of Staphylococcus aureus among agricultural biotechnology students in Besut, Terengganu, east coast of Malaysia. Trop Med Int Health. 2018;23:905–13.
Article
CAS
PubMed
Google Scholar
Boswihi SS, Udo EE. Methicillin-resistant Staphylococcus aureus: An update on the epidemiology, treatment options and infection control. Curr Med Res Pract. 2018;8:18–24.
Article
Google Scholar
Sit PS, Teh CSJ, Idris N, Sam I-C, Syed Omar SF, Sulaiman H, et al. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect Dis. 2017;17:274.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aklilu E, Chia HY. First mecC and mecA positive livestock-associated methicillin resistant Staphylococcus aureus (mecC MRSA/LA-MRSA) from dairy cattle in Malaysia. Microorganisms. 2020;8:147.
Article
CAS
PubMed Central
Google Scholar
Zhang S, Sun X, Chang W, Dai Y, Ma X. Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS ONE. 2015;10:e0136082.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmad N, Ling LN, Ghani M, Nawi S. The presence of heterogeneous vancomycin-intermediate Staphylococcus aureus (heteroVISA) in a major Malaysian hospital. Med J Malaysia. 2012;67:269–73.
Google Scholar
Ramli SR, Neoh H-M, Aziz MN, Hussin S. Screening and detection of heterogenous vancomycin intermediate Staphylococcus aureus in Hospital Kuala Lumpur Malaysia, using the glycopeptide resistance detection Etest and population analysis profiling. Infect Dis Rep. 2012;4:e20.
Article
PubMed
PubMed Central
Google Scholar
Che Hamzah AM, Yeo CC, Puah SM, Chua KH, Rahman NIA, Abdullah FH, et al. Tigecycline and inducible clindamycin resistance in clinical isolates of methicillin-resistant Staphylococcus aureus from Terengganu, Malaysia. J Med Microbiol. 2019;68:1299–305.
Article
PubMed
CAS
Google Scholar
Spiliopoulou I, Petinaki E, Papandreou P, Dimitracopoulos G. erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. J Antimicrob Chemoth. 2004;53:814–7.
Article
CAS
Google Scholar
Mohd Rani FA, Rahman NI, Ismail S, Alattraqchi AG, Cleary DW, Clarke SC, et al. Acinetobacter spp. infections in Malaysia: a review of antimicrobial resistance trends, mechanisms and epidemiology. Front Microbiol. 2017;8:2479.
Article
PubMed
PubMed Central
Google Scholar
Mohd R, Nesam T, Kamaruzaman L, Cader RA, Mustafar R, Kong W-Y. Community acquired multi drug resistant (MDR) Acinetobacter baumannii pneumonia in Malaysia—a case report. Respir Med Case Rep. 2018;24:147–9.
PubMed
PubMed Central
Google Scholar
Institute of Medical Research (IMR). National surveillance of antimicrobial resistance, Malaysia. Ministry of Health (MOH), Kuala Lumpur, Malaysia. 2019. https://www.imr.gov.my/MyOHAR/index.php/site/archive_rpt. Accessed 4 Aug 2020.
Biglari S, Alfizah H, Ramliza R, Rahman MM. Molecular characterization of carbapenemase and cephalosporinase genes among clinical isolates of Acinetobacter baumannii in a tertiary medical centre in Malaysia. J Med Microbiol. 2015;64:53–8.
Article
CAS
PubMed
Google Scholar
Kong BH, Hanifah YA, Yusof MYM, Thong KL. Antimicrobial susceptibility profiling and genomic diversity of multidrug-resistant Acinetobacter baumannii isolates from a teaching hospital in Malaysia. Jon J Infect Dis. 2011;64:337–40.
Article
Google Scholar
Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica. 2014;2014:245162.
Article
PubMed
PubMed Central
Google Scholar
Naas T, Coignard B, Carbonne A, Blanckaert K, Bajolet O, Bernet C, et al. VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii. France Emerg Infect Dis. 2006;12:1214–22.
Article
CAS
PubMed
Google Scholar
Naas T, Bogaerts P, Bauraing C, Degheldre Y, Glupczynski Y, Nordmann P. Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemoth. 2006;58:178–82.
Article
CAS
Google Scholar
Thapa B, Tribuddharat C, Srifuengfung S, Dhiraputra C. Class 1 integron element in Thai Acinetobacter baumannii reveals a linkage to the European clone I. Int J Infect Microbiol. 2012;1:24–8.
Article
Google Scholar
Lean S-S, Suhaili Z, Ismail S, Rahman NIA, Othman N, Abdullah FH, et al. Prevalence and genetic characterization of carbapenem-and polymyxin-resistant Acinetobacter baumannii isolated from a tertiary hospital in Terengganu, Malaysia. Int Sch Res Notices. 2014;2014:953417.
Google Scholar
Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: Clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemoth. 2012;67:1607–15.
Article
CAS
Google Scholar
Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Ch. 2006;50:4114–23.
Article
CAS
Google Scholar
Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-yamchi M, Hasani A, Ghotaslou R, et al. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother. 2017;23:74–9.
Article
CAS
PubMed
Google Scholar
Hughes AJ, Ariffin N, Huat TL, Molok HA, Hashim S, Sarijo J, et al. Prevalence of nosocomial infection and antibiotic use at a University Medical Center in Malaysia. Infect Control Hosp Epidemiol. 2005;26:100–4.
Article
PubMed
Google Scholar
Al-Kabsi AM, Yusof MYBM, Sekaran SD. Antimicrobial resistance pattern of clinical isolate of Pseudomonas aeruginosa in the University of Malaya Medical Center. Malaysia Afr J Microbiol Res. 2011;5:5266–72.
Google Scholar
Fazlul M, Zaini M, Rashid M, Nazmul M. Antibiotic susceptibility profiles of clinical isolates of Pseudomonas aeruginosa from Selayang Hospital. Malaysia Biomed Res. 2011;22:263–6.
CAS
Google Scholar
Idris S, Desa M, Aziz M, Taib N. Antimicrobial susceptibility pattern and distribution of exoU and exoS in clinical isolates of Pseudomonas aeruginosa at a Malaysian hospital. SE Asian J Trop Med. 2012;43:116–23.
CAS
Google Scholar
Raja NS, Singh NN. Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital. J Microbiol Immunol Infect. 2007;40:45–9.
CAS
PubMed
Google Scholar
Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P. Carbapenem-resistant Pseudomonas aeruginosa in Malaysia producing IMP-7 β-Lactamase. Antimicrob Agents Ch. 2002;46:3286–7.
Article
CAS
Google Scholar
Khosravi Y, Tay ST, Vadivelu J. Metallo-β-lactamase–producing imipenem-resistant Pseudomonas aeruginosa clinical isolates in a university teaching hospital in Malaysia: Detection of IMP-7 and first identification of IMP-4, VIM-2, and VIM-11. Diagn Microbiol Infect Dis. 2010;67:294–6.
Article
CAS
PubMed
Google Scholar
Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol. 2011;60:988–94.
Article
CAS
PubMed
Google Scholar
Liew SM, Rajasekaram G, Puthucheary SD, Chua KH. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug-resistant Pseudomonas aeruginosa in Malaysia. J Glob Antimicrob Resist. 2018;13:271–3.
Article
PubMed
Google Scholar
Rodríguez-Martínez J-M, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Ch. 2009;53:1766–71.
Article
CAS
Google Scholar
Birgand G, Zahar J-R, Lucet J-C. Insight Into the complex epidemiology of multidrug-resistant Enterobacteriaceae. Clin Infect Dis. 2018;66:494–6.
Article
PubMed
Google Scholar
Mobasseri G, Thong KL, Rajasekaram G, Teh CSJ. Molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae from a Malaysian hospital. Braz J Microbiol. 2020;51:189–95.
Article
CAS
PubMed
Google Scholar
Ho WS, Balan G, Puthucheary S, Kong BH, Lim KT, Tan LK, et al. Prevalence and characterization of multidrug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli from pediatric wards of a Malaysian hospital. Microb Drug Resist. 2012;18:408–16.
Article
CAS
PubMed
Google Scholar
Khor S, Jegathesan M. Transferable antibiotic resistance in clinical isolates of Enterobacteriaceae in Malaysia. Med J Malaysia. 1983;38:19.
CAS
PubMed
Google Scholar
Al-Marzooq F, Mohd Yusof MY, Tay ST. Molecular analysis of antibiotic resistance determinants and plasmids in Malaysian isolates of multidrug resistant Klebsiella pneumoniae. PLoS ONE. 2015;10:e0133654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hsu L-Y, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017;30:1–22.
Article
PubMed
Google Scholar
Mohsen S, Hamzah H, Al-Deen MM. Phenotypic and molecular study of carbapenem-resistant Enterobacteriaceae in a referral hospital in the East coast Malaysia. Int J Health Allied Sci. 2018;7:17–22.
Article
Google Scholar
Zaidah AR, Mohammad NI, Suraiya S, Harun A. High burden of carbapenem-resistant Enterobacteriaceae (CRE) fecal carriage at a teaching hospital: Cost-effectiveness of screening in low-resource setting. Antimicrob Resist Infect Control. 2017;6:42.
Article
PubMed
PubMed Central
Google Scholar
Al-Marzooq F, Ngeow YF, Tay ST. Emergence of Klebsiella pneumoniae producing dual carbapenemases (NDM-1 and OXA-232) and 16S rRNA methylase (armA) isolated from a Malaysian patient returning from India. Int J Antimicrob Ag. 2015;45:445–6.
Article
CAS
Google Scholar
Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int J Antimicrob Ag. 2019;54:381–99.
Article
CAS
Google Scholar
Low Y-M, Yap PS-X, Abdul Jabar K, Ponnampalavanar S, Karunakaran R, Velayuthan R, et al. The emergence of carbapenem resistant Klebsiella pneumoniae in Malaysia: correlation between microbiological trends with host characteristics and clinical factors. Antimicrob Resist Infect Control. 2017;6:5.
Article
PubMed
PubMed Central
Google Scholar
Bradford PA, Kazmierczak KM, Biedenbach DJ, Wise MG, Hackel M, Sahm DF. Colistin-resistant Enterobacteriaceae: correlation of β-lactamase production and colistin resistance among isolates from a global surveillance program. Antimicrob Agents Ch. 2015;60(3):1385–92.
Article
CAS
Google Scholar
Yap PSX, Ahmad Kamar A, Chong CW, Yap IKS, Thong KL, Choo YM, et al. Intestinal carriage of multidrug-resistant gram-negative bacteria in preterm-infants during hospitalization in neonatal intensive care unit (NICU). Pathog Glob Health. 2016;110:238–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mobasseri G, Teh CSJ, Ooi PT, Thong KL. The emergence of colistin-resistant Klebsiella pneumoniae strains from swine in Malaysia. J Glob Antimicrob Resist. 2019;17:227–32.
Article
PubMed
Google Scholar
Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann NY Acad Sci. 2015;1354:12–31.
Article
CAS
PubMed
Google Scholar
Al-Marzooq F, Mohd Yusof MY, Tay ST. Molecular analysis of ciprofloxacin resistance mechanisms in Malaysian ESBL-producing Klebsiella pneumoniae isolates and development of Mismatch Amplification Mutation Assays (MAMA) for rapid detection of gyrA and parC mutations. BioMed Res Int. 2014;2014:601630.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thong KL, Ngoi ST, Chai LC, Teh CSJ. Quinolone resistance mechanisms among Salmonella enterica in Malaysia. Microb Drug Resist. 2016;22:259–72.
Article
CAS
PubMed
Google Scholar
Kim HB, Park CH, Kim CJ, Kim E-C, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Ch. 2009;53:639–45.
Article
CAS
Google Scholar
Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Ag. 2005;25:358–73.
Article
CAS
Google Scholar
Sirat R, Hamzah HA, Mahmud MIAM, Ahmad SNB. Molecular characterization of gyrA, parC and qepA genes in quinolone resistant ESBL-producing E. coli isolated from patients in HTAA, Kuantan. IIUM Med J Malaysia. 2019;18:2.
Google Scholar
Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66:551–9.
Article
CAS
PubMed
Google Scholar