Maass BL, Musale DK, Chiuri WL, Gassner A, Peters M. Challenges and opportunities for smallholder livestock production in post-conflict South Kivu, eastern DR Congo. Trop Anim Health and Prod. 2012;44(6):1221–32.
Article
Google Scholar
Robinson, T. P., & Pozzi, F. Mapping supply and demand for animal-source food to 2030. FAO, Animal production and health working paper. 2011; 2, 1–154.
Udomkun P, Ilukor J, Mockshell J, Mujawamariya G, Okafor C, Bullock R, Vanlauwe B. What are the key factors influencing consumers’ preference and willingness to pay for meat products in Eastern DRC? Food Sci and Nutr. 2018;6(8):2321–36.
Article
Google Scholar
Appiah GD, Chung A, Bentsi-Enchill AD, Kim S, Crump JA, Mogasale V, Mintz ED. Typhoid outbreaks, 1989–2018: implications for prevention and control. AM J Trop Med Hyg. 2020;102(6):1296–305.
Article
Google Scholar
Amicizia, D., Micale, R. T., Pennati, B. M., Zangrillo, F., Iovine, M., Lecini, E., Panatto, D. Burden of typhoid fever and cholera: similarities and differences. Prevention strategies for European travelers to endemic/epidemic areas. J Prev Med Public Health. 2019; 60(4), E271.
Mahangaiko M, Mabi N, Bakana M, Nyongombe U. Food contamination with salmonella and human health in Kinshasa city, Democratic Republic of Congo (DRC). JABs. 2015;2015(94):8809–14.
Article
Google Scholar
Irenge LM, Kabego L, Kinunu FB, Itongwa M, Mitangala PN, Gala JL, Chirimwami RB. Résistance antimicrobienne de bactéries isolées provenant de patients présentant des infections du sang dans un hôpital de soins tertiaires en République démocratique du Congo. S Afr Med J. 2015;105(9):752–5.
Article
Google Scholar
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. MicrobiologyOpen. 2020 Jul 25:e1035.
Autorité européenne de sécurité des aliments (EFSA). – The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J., 2012, 10(3), 233 pp
Mensah G.A. – Atelier technique sur l’analyse des risques sanitaires des aliments. In Rapport final de l’atelier. Cotonou- Bénin, 2011, 14 pp. Disponible en ligne : http://www.fao.org/fileadmin/user_upload/agns/pdf/Rapport_atelier_FAO_OMS__INRAB_Cotonou_dec_2011.pdf
Randolph, T. F., Schelling, E., Grace, D., Nicholson, C. F., Leroy, J. L., Cole, D. C., ... & Ruel, M. Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. JAS. 2007, 85(11), 2788–2800.
Sanusi, R.A. et Olurin A. Portion and serving sizes of commonly consumed food, in Ibadan, Southwestern Nigeria.. Afr.J. Biomed. Res. 2012; 15:149–158.
Speedy AW. Global production and consumption of animal source food. J Nutr. 2003;133(11):4048S-4053S.
Article
CAS
Google Scholar
Talaiekhozani A, Alaee S, Ponraj M. Guidelines for quick application of biochemical tests to identify unknown bacteria. AOBR. 2015;2(2):65–82.
Google Scholar
Bauer AT. Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol. 1966;45:149–58.
Article
Google Scholar
CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. CLSI document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.
Birindwa, A. M., Emgård, M., Nordén, R., Samuelsson, E., Geravandi, S., Gonzales-Siles, L., ... & Cibicabene, D. High rate of antibiotic resistance among pneumococci carried by healthy children in the eastern part of the Democratic Republic of the Congo. BMC Pediatrics. 2018; 18(1), 361.
Mitima TK, Birindwa AM, Lupande DM, Mihuhi N, Kivukuto JM, et al. Antibio-résistance des souches de Salmonella spp isolées d’hémocultures à Bukavu en RD Congo. Pan Afr J Med. 2018;29:42.
Google Scholar
Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–33.
Article
CAS
Google Scholar
Sivagami, K., Vignesh, V. J., Srinivasan, R., Divyapriya, G., & Nambi, I. M. Antibiotic usage, residues and resistance genes from food animals to human and environment: An Indian scenario. J Environ Chem Eng. 2020, 8(1), 102221.
Thapa, S. P., Shrestha, S., & Anal, A. K. Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control. 2020, 108, 106809.
Moyane JN, Jideani AIO, Aiyegoro OA. Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. Afr J Microbiol Res. 2013;7(24):2990–7.
Article
Google Scholar
De Briyne N, Atkinson J, Pokludová L, Borriello SP. Antibiotics used most commonly to treat animals in Europe. Vet Rec. 2014;175(13):325.
Article
Google Scholar
Kirbis A, Krizman M. Spread of antibiotic resistant bacteria from food of animal origin to humans and vice versa. Int J Food Sci Technol. 2015;5:148–51.
Google Scholar
Kariuki, S., Revathi, G., Corkill, J., Kiiru, J., Mwituria, J., Mirza, N., & Hart, C. A. (2007). Escherichia coli from community-acquired urinary tract infections resistant to fluoroquinolones and extended-spectrum beta-lactams. J Infect Dev Ctries, 2007. 1(03), 257–262.
Rahman, M. M., Ahmed, P., Kar, A., Sakib, N., Shibly, A. Z., Zohora, F. T., & Hasan, M. N.. Prevalence, Antimicrobial Resistance, and Pathogenic Potential of Enterotoxigenic and Enteropathogenic Escherichia coli Associated with Acute Diarrheal Patients in Tangail, Bangladesh. FOODBORNE PATHOG DIS. 2020. 17 (7). DOI: https://doi.org/10.1089/fpd.2019.2741
Sáenz Y, Briñas L, Domínguez E, Ruiz J, Zarazaga M, Vila J, Torres C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother. 2004;48(10):3996–4001.
Article
Google Scholar
Schulz J, Kemper N, Hartung J, Janusch F, Mohring SA, Hamscher G. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci Rep. 2019;9(1):1–7.
Google Scholar
Omotoso, A. B., & Omojola, A. B. Fluoroquinolone residues in raw meat from open markets in Ibadan, Southwest, Nigeria. International Journal of Health, HAF. 2020; 2(1).
Kyuchukova R, Urumova V, Lyutskanova M, Petrov V, Pavlov A. Levofloxacin residues in chicken meat and giblets. Bulg J Vet Med. 2013;16(1):216–9.
Google Scholar
Martins, K. B., Faccioli, P. Y., Bonesso, M. F., Fernandes, S., Oliveira, A. A., Dantas, A., Maria de Lourdes, R. S. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. J. Dairy Sci., 2017; 100(3), 2184–2195.
Kadima JN, Irenge CA, Mulashe PB, Kasali FM, Wimba P. Antibiogram profile of antibacterial multidrug resistance in democratic Republic of Congo: Situation in Bukavu City Hospitals.
Falagas ME, Rafailidis PI, Kofteridis D, Virtzili S, Chelvatzoglou FC, Papaioannou V, Michalopoulos A. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case–control study. J Antimicrob Chemother. 2007;60(5):1124–30.
Article
CAS
Google Scholar
Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018;7(1):1–14.
Article
CAS
Google Scholar
Harris PN, Wei JY, Shen AW, Abdile AA, Paynter S, Huxley RR, Paterson DL. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with meta-analysis. J Antimicrob Chemother. 2016;71(2):296–306.
Article
CAS
Google Scholar
Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK, et al. Epidemiological Evidence That Garden Birds Are a Source of Human Salmonellosis in England and Wales. PLoS ONE. 2014;9(2): e88968. https://doi.org/10.1371/journal.pone.0088968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suwono B, Eckmanns T, Kaspar H, Merle R, Zacher B, et al. Cluster analysis of resistance combinations in Escherichia coli from different human and animal populations in Germany 2014–2017. PLoS ONE. 2021;16(1): e0244413. https://doi.org/10.1371/journal.pone.0244413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, et al. Livestock-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) as Causes of Human Infection and Colonization in Germany. PLoS ONE. 2013;8(2): e55040. https://doi.org/10.1371/journal.pone.0055040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, et al. Comparative Analysis of ESBL-Positive Escherichia coli Isolates from Animals and Humans from the UK. The Netherlands and Germany PLoS ONE. 2013;8(9): e75392. https://doi.org/10.1371/journal.pone.0075392.
Article
CAS
PubMed
Google Scholar
Ntizala, A. B., Mulume, T. Y., Runyeruka, B. L., & Kishabongo, A. S. (2020). Antibiotic Dispensing Practices in Community Pharmacies: A Major Health Concern in the Eastern Democratic Republic of Congo. Journal of Pharmaceutical Research International, 33–44.
Naing L, Winn T, Rusli BN. Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci. 2006;1:9–14.
Google Scholar
Daniel WW, Cross CL. Biostatistics: a foundation for analysis in the health sciences. Wiley; 2018.
Google Scholar