Our study demonstrated that the overall prevalence and poor outcomes of DR-TB cases among adults in the Netherlands were relatively low. Most DR-TB cases were foreign-born, newly diagnosed TB and isoniazid mono−/poly-resistant TB patients. Though the numbers were low, we identified that MDR-TB, homelessness, and substance abuse were statistically significant predictors for unsuccessful treatment, while miliary and CNS-TB were analysed as predictors for TB-associated mortality among overall DR-TB cases. Additionally, we noted that patients with male gender and substance abuse were more likely to have a poor outcome after MDR-TB treatment. Among all DR-TB cases, we found that previously diagnosed TB patients, illegal immigrants, travelers from/in endemic areas and prisoners were more likely not to be evaluated for their treatment outcome, which indicates potential risk of poor outcome treatment.
Our study showed that the Netherlands has a low prevalence of DR-TB and poor DR-TB treatment outcomes. Several studies described that the prevalence of DR-TB and MDR-TB across the 27 European Union (EU) and European Economic Area (EEA) countries were 10 and 2%, respectively [18], while our data demonstrated that the Netherlands has a 5.3% prevalence of DR-TB and a 1% prevalence of MDR-TB. In case of MDR-TB, the treatment success rate in the Netherlands was 88%, which is higher than the globally reported rates (46–58%) [3] and the 27 EU/EEA countries (48%) [18].
Our study determined that homelessness and substance abuse are risk factors for having an unsuccessful TB treatment outcome in overall DR-TB patients. Homeless patients are faced with several problems, such as unstable accommodation, lack of infection awareness, difficulties of accessing healthcare services, stigmatization, problems with access to proper nutrition and suffering from comorbidities [19]. Those problems can lead to increasing discontinuation rate and non-adherence to the medication. A published review stated that drug users are associated with vulnerable TB condition, such as homelessness and HIV status [20]. It can be argued that homeless patients are a susceptible group to have poor TB treatment outcomes. Although due to low numbers of outcomes, we observed statistically significant associations. However, the precision of the estimates was low, especially for the factors homelessness and substance abuse.
CNS and miliary TB should be a concern in the management of TB as their mortality risk was the highest of all TB forms. This finding was supported by a study in Denmark [21] that showed that CNS-TB was a factor strongly associated with mortality in TB patients. Another study reported that CNS-TB was frequently accompanied with miliary TB [22]. The multifaceted problems in the management of CNS-TB relate to delays in clinical recognition, diagnosis, treatment and drug penetration in cerebrospinal fluid, have been determined as the main issues to improve successful treatment [23].
As expected, although isoniazid mono−/poly-resistant TB was presented in the majority of cases in this study, MDR-TB cases tend to have more frequently the unsuccessful treatment outcome. Additional use of moxifloxacin in first-line TB regimen may give a positive effect for the outcome of isoniazid mono−/poly-resistant TB patients. A meta-analytical study that included data from the Netherlands supported that addition of a fluoroquinolone to 6 months or more of first-line regimen was associated with significantly greater treatment success [24]. On the other hand, the complexity of the MDR-TB treatment regimen that uses a combination of first- and second-line drugs based on susceptibility testing can result in unsuccessful treatment. The treatment is longer, less effective and less tolerable than standard treatments, and involves injectable drugs as well. Hence, adverse events can occur among MDR-TB patient and are a factor in the decision to discontinued treatment.
We also found that males and substance abuse are associated with poor MDR-TB treatment outcomes. The finding of an association between gender and tuberculosis treatment outcomes remains a contested debate. Several studies have reported that there is no association between gender and treatment outcomes among DR-TB patients [25,26,27]. In contrast, studies in Nigeria [28] and Taiwan [29] found that male gender is associated with poorer tuberculosis treatment outcomes, while a review explained an opposite statement [30]. The disparity of the result can be explained by differences in social, cultural, economic and clinical factors between patients and geographical area. Financial dependence, cultural inequality and greater fear of the stigmatization make it more difficult for women to access qualified medical care in some areas [31, 32]. On the other hand, gender-specific social role makes men to have more social contact in other areas, thereby increasing the risk of TB exposure [33]. Furthermore, clinical aspects can also play a role in the treatment outcome. A study in Nigeria [28] showed that male patients were older, while a study in Taiwan [29] described that males were more likely to smoke, have COPD, malignancy, cirrhosis, low body weight, pleural effusion or hemoptysis. In our data, the prevalence of the poor outcome in MDR-TB was higher in males (10.68%) than females (0.97%). We found that substance abuse was the only one characteristic that associated with poor outcome in the male group, while there was no characteristic associated with poor outcome in the female group (see Additional file 1: Table S3). Although substance abuse was indicated as a factor that affected the poor outcome in the different gender, a further study that considers social, cultural, economic and clinical aspects is required to obtain a comprehensive picture across geographical areas.
The present study indicated that most DR-TB patients were foreign-born, with primary drug-resistant M. tb. This finding can be explained by the fact that the most DR-TB patients had a newly diagnosed TB Since the Netherlands has a low TB prevalence, it seems that immigration and activation of latent TB were essential factors of DR-TB cases in the Netherlands.
Several potential limitations in our study need to be mentioned. First, some potential predictors such as HIV status, treatment delay, history of BCG vaccine, level of education, the income of patients, and patients’ beliefs, could not be analysed due to the unavailability of the data for a large number of patients. Second, since the data were collected from a national database, we relied on administrative input without any direct investigation. Third, the low incidence of the study outcomes (unsuccessful treatment and death) led to potential overestimations and a wide confidence interval around the odd ratios in some associations between predictors and the outcomes. The inaccuracy of point estimate may exist in the association between gender and poor treatment outcome among MDR-TB patients. It is due to the uncommon incidence of poor treatment outcome in the female group. However, we identified that the probability of poor treatment outcome was significantly higher in the male (91.7%) than female group (8.3%). Additionally, a factor that was associated with poor treatment outcome in the MDR-TB group, i.e., substance abuse, was significantly dominated by male patients (Additional file 1: Table. S3). These reasons seem to suggest that males are more likely to have poor treatment outcome among MDR-TB patients. Fourth, analysis of the appropriateness of medication cannot be performed due to lack of detailed treatment history and regimen in the database. However, we believe that integrating documentation and data collection of TB information, supported with integrated information technology and a referral system of healthcare services in the Netherlands, will minimize potential bias and results can be generalized to the Dutch population. Importantly the information may also be useful for low-incidence TB countries in general.
A high success rate for MDR-TB treatment in the Netherlands was constantly reported from the previous studies [12, 13] to the present study. Integrated systems and collaboration between all stakeholders may be the key to this success. Municipal Public Health Services (MPHSs) have an important role in controlling TB in the Netherlands. Twenty-five MPHSs, staffed by public health TB control officers, physicians, nurses, and administrative staff, are spread widely across the Netherlands [34]. They have the responsibility to diagnose, treat and monitor TB and LTBI patients for TB control. Suspected TB patients from the general practice or at-risk groups, such as immigrants, asylum seekers, and prisoners will have a TB examination in MPHSs to identify TB cases. A dedicated hospital TB coordinator in the Netherlands manages TB cases in the hospital setting. To optimize treatment adherence, TB nurses in MPHSs have been trained as treatment supporters in order to monitor drug adherence during the treatment period. Two special hospitals for TB, called modern TB centres, are available for long-term admissions, socially problematic cases and clinically complex patients, such as TB meningitis or M- and XDR-TB patients [35]. If a contagious TB patient refuses treatment and poses a risk to the general population, the patient can be compulsorily isolated according to the Dutch Public Health Act. TB centre Beatrixoord is designated by the Dutch government for compulsory isolation. Moreover, pharmacokinetics/pharmacodynamics modeling has been used for therapeutic drug monitoring (TDM) in the MDR-TB treatment for years [36]. Since the treatment can be up to 24-month treatment, the TDM supported for shortening the regimen due to low drug exposure as well as improve safety and efficacy of the drugs [37].
However, to optimize treatment outcome among DR-TB patients, special attention should be given to patients with MDR-TB, homelessness, substance abuse, as well as miliary and CNS-TB. Admission of these patients to a modern TB centre may be an option to intensify the treatment and monitoring of these high-risk patients. It can also prevent further development of drug resistance and transmission of tuberculosis in the community [35]. The treatment management for these patients should not only focus on medical support but also on social support. Treatment should not only be seen from the perspective of delivery to the patients but should also be seen from a comprehensive care perspective that should consider the patient’s ability to take medicine, to make a right life choice, and the treatment should support their circumstances to ensure an adherence to the treatment and an improvement in the quality of life [20, 35].