World Health Organization (WHO). Antimicrobial resistance: global report on surveillance. World Health Organization; 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/112647/WHO_HSE_PED_AIP_?sequence=1
Gulen TA, Guner R, Celikbilek N, Keske S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multidrug-resistant Acinetobacter baumannii. Int J Infect Dis. 2015;38:32–5.
Article
Google Scholar
World Health Organization (WHO). Worldwide country situation analysis: response to antimicrobial resistance. 2015. Available from: https://apps.who.int/iris/bitstream/10665/163468/1/9789241564946_eng.pdf
Jasovský D, Littmann J, Zorzet A, Cars O. Antimicrobial resistance—a threat to the world’s sustainable development. Ups J Med Sci. 2016;121(3):159–64. https://doi.org/10.1080/03009734.2016.1195900.
Article
PubMed
PubMed Central
Google Scholar
Mpaire Y, Wamala S, Uganda National Academy of Sciences (UNAS). Antibiotic Resistance in Uganda: Situation Analysis and Recommendations. Uganda Natl Acad Sci Kampala, Uganda. 2015; Available from: https://www.cddep.org/wp-content/uploads/2017/06/uganda_antibiotic_resistance_situation_reportgarp_uganda_0-1.pdf
Najjuka CF, Kateete DP, Kajumbula HM, Joloba ML, Essack SY. Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res Notes. 2016;9(1):235. https://doi.org/10.1186/s13104-016-2049-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walusansa A, Iramiot JS, Najjuka CF, Aruhomukama D, Mukasa HK, Kajumbula H, et al. High Prevalence of Antibiotic-Resistant Escherichia coli Serotype O157: H7 among Pastoral Communities in Rural Uganda. Microbiol Res J Int. 2020;36–43.
Walters MS, Routh J, Mikoleit M, Kadivane S, Ouma C, Mubiru D, et al. Shifts in geographic distribution and antimicrobial resistance during a prolonged typhoid fever outbreak — bundibugyo and Kasese Districts, Uganda, 2009–2011. Ryan ET, editor. PLoS Negl Trop Dis. 2014 Mar 6 [cited 2019 Sep 2];8(3):e2726. doi:https://doi.org/10.1371/journal.pntd.0002726
Lowings M, Ehlers MM, Dreyer AW, Kock MM. High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa–an update. BMC Infect Dis. 2015;15(1):1–10. https://doi.org/10.1186/s12879-015-1246-8.
Article
CAS
Google Scholar
Ahmed AM, Shimamoto T, Shimamoto T. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int J Food Microbiol. 2014;189:39–44.
Article
CAS
Google Scholar
Onanuga A, Temedie TC. Multidrug-resistant intestinal Staphylococcus aureus among self-medicated healthy adults in Amassoma, South-South, Nigeria. J Health Popul Nutr. 2011;29(5):446.
Article
Google Scholar
De Boeck H, Vandendriessche S, Hallin M, Batoko B, Alworonga J-P, Mapendo B, et al. Staphylococcus aureus nasal carriage among healthcare workers in Kisangani, the Democratic Republic of the Congo. Eur J Clin Microbiol Infect Dis. 2015;34(8):1567–72. https://doi.org/10.1007/s10096-015-2387-9.
Article
PubMed
Google Scholar
The Open University. Hygiene and Environmental Health Module: 8. Food Contamination and Spoilage: View as a single page. The open University, Ethiopia; 2018 [cited 2019 Aug 27]. Available from: https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=194&printable=1
Korir R, Anzala O, Jaoko W, Bii C, Ketera L. Multidrug-Resistant Bacterial Isolates Recovered from Herbal Medicinal Products Sold in Nairobi, Kenya. Heal Res J. 2017;40.
Pan X, Zhang A, Henderson GE, Rennie S, Liu C, Cai W, et al. Traditional, complementary, and alternative medical cures for HIV: rationale and implications for HIV cure research. Glob Public Health. 2019;14(1):152–60. https://doi.org/10.1080/17441692.2017.1413122.
Article
PubMed
Google Scholar
Hexa Research. Herbal Medicine Market Size and Forecast, By Product (Tablets & Capsules, Powders, Extracts), By Indication (Digestive Disorders, Respiratory Disorders, Blood Disorders), And Trend Analysis, 2014 - 2024. 2017. Available from: https://www.hexaresearch.com/research-report/global-herbal-medicine-market
Kaadaaga HF, Ajeani J, Ononge S, Alele PE, Nakasujja N, Manabe YC, et al. Prevalence and factors associated with the use of herbal medicine among women attending an infertility clinic in Uganda. BMC Complement Altern Med. 2014;14(1):27. https://doi.org/10.1186/1472-6882-14-27.
Article
PubMed
PubMed Central
Google Scholar
Lubinga SJ, Kintu A, Atuhaire J, Asiimwe S. Concomitant herbal medicine and Antiretroviral Therapy (ART) use among HIV patients in Western Uganda: a cross-sectional analysis of magnitude and patterns of use, associated factors and impact on ART adherence. AIDS Care. 2012;24(11):1375–83. https://doi.org/10.1080/09540121.2011.648600.
Article
CAS
PubMed
Google Scholar
Stanifer JW, Lunyera J, Boyd D, Karia F, Maro V, Omolo J, et al. Traditional medicine practices among community members with chronic kidney disease in northern Tanzania: an ethnomedical survey. BMC Nephrol. 2015;16(1):170. https://doi.org/10.1186/s12882-015-0161-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okot DF, Anywar G, Namukobe J, Byamukama R. Medicinal plants species used by herbalists in the treatment of snakebite envenomation in Uganda. Trop Med Health. 2020;48:1–14. https://doi.org/10.1186/s41182-020-00229-4.pdf.
Article
Google Scholar
Ochwang’i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol. 2014;151(3):1040–55.
Walusansa A, Asiimwe S, Kafeero HM, Stanley IJ, Ssenku JE, Nakavuma JL, et al. Prevalence and dynamics of clinically significant bacterial contaminants in herbal medicines sold in East Africa from 2000 to 2020: a systematic review and meta-analysis. Trop Med Health. 2021;49(1):1–14. https://doi.org/10.1186/s41182-020-00295-8.
Article
Google Scholar
Kaume L, Foote JC, Gbur EE. Microbial contamination of herbs marketed to HIV-infected people in Nairobi (Kenya). S Afr J Sci. 2012;108(9–10):1–4. https://doi.org/10.10520/EJC125497.
Article
Google Scholar
Posadzki P, Watson L, Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews. Eur J Clin Pharmacol. 2013;69(3):295–307. https://doi.org/10.1007/s00228-012-1353-z.
Article
PubMed
Google Scholar
Basch E, Ulbricht C, Harrison M, Sollars D, Smith M, Dennehy C, et al. Alfalfa (Medicago sativa L.) A clinical decision support tool. J Herb Pharmacother. 2003;3(2):69–90.
Chan K. Some aspects of toxic contaminants in herbal medicines. Chemosphere. 2003;52(9):1361–71.
Article
CAS
Google Scholar
Job KM, Kiang TKL, Constance JE, Sherwin CMT, Enioutina EY. Herbal medicines: challenges in the modern world. Part 4. Canada and United States. Expert Rev Clin Pharmacol. 2016;9(12):1597–609.
Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, et al. An evidence-based systematic review of saffron (Crocus sativus) by the Natural Standard Research Collaboration. J Diet Suppl. 2011;8(1):58–114.
Article
CAS
Google Scholar
Govender S, Du Plessis-Stoman D, Downing TG, Van de Venter M. Traditional herbal medicines: microbial contamination, consumer safety and the need for standards. S Afr J Sci. 2006;102(5–6):253–5. https://doi.org/10.1186/s12906-019-2723-1.
Article
Google Scholar
United Nations (UN). Country classification. 2014. p. 146–7. Available from: https://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_classification.pdf
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.
Article
PubMed
Google Scholar
Neyeloff JL, Fuchs SC, Moreira LB. Meta-analyses and Forest plots using a Microsoft Excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res Notes. 2012;5(1):1–6. https://doi.org/10.1186/1756-0500-5-52.
Article
Google Scholar
Kafeero HM, Ndagire D, Ocama P, Walusansa A, Sendagire H. Sero-prevalence of human immunodeficiency virus–hepatitis B virus (HIV–HBV) co-infection among pregnant women attending antenatal care (ANC) in sub-Saharan Africa (SSA) and the associated risk factors: a systematic review and meta-analysis. Virol J. 2020;17(1):1–19.
Article
Google Scholar
Yesuf A, Wondimeneh Y, Gebrecherkos T, Moges F. Occurrence of Potential Bacterial Pathogens and Their Antimicrobial Susceptibility Patterns Isolated from Herbal Medicinal Products Sold in Different Markets of Gondar Town, Northwest Ethiopia. Int J Bacteriol. 2016;2016. Available from: https://pubmed.ncbi.nlm.nih.gov/27299154/
Kidus Tsehaye, Zenebe T. Isolation, Characterization and Identification of Contaminant Bacteria from Saccharum officinarum L. in vitro Culture in Tigray Biotechnology Center, Mekelle, Ethiopia. J Bacteriol Parasitol. 2020. doi: https://doi.org/10.35248/2155-9597.20.11.372.
Keter L, Too R, Mwikwabe N, Ndwigah S, Orwa J, Mwamburi E, et al. Bacteria contaminants and their antibiotic sensitivity from selected herbal medicinal products from Eldoret and Mombasa, Kenya. Am J Microbiol. 2016;7(1):18–28. https://doi.org/10.3844/ajmsp.2016.18.28.
Article
Google Scholar
Oluwasegun AF, Nejo VM. Microbial assessment of herbal products in Ota and its environs. Niger J Microbiol. 2017;31(2):3479–84.
Google Scholar
Archibong EJ, Igboeli CN, Okoro NC, Obika I. Microbiological assessment of some liquid herbal medications sold in Awka metropolis. Anambra State Bioeng Biosci. 2017;5(3):37–46.
CAS
Google Scholar
Stanley CN, Ibezim C, Diorgu FC. Evaluation of the claims of microbiological activity and microbiological quality of some oral herbal medicinal products sold in Port-Harcourt metropolis. Microbiol Res J Int. 2018;1–16.
Abba D, Inabo H, Yakubu S, Olonitola O. Contamination of herbal medicinal products marketed in Kaduna metropolis with selected pathogenic bacteria. African J Tradit Complement Altern Med. 2009;6(1). doi:https://doi.org/10.4314/ajtcam.v6i1.57076
Ejukonemu FE, Isaac IO. Physicochemical and microbiological evaluation of Agbo (herbal decoction) sold in some parts of Warri metropolis, Delta-State, Nigeria. Infection. 4:0–7.
Osungunna MO, Oluremi BB, Talabi I. Comparative microbial quality of Jedi drinks sold in two major cities in Nigeria, Pakistan. J Nutr. 2010;9(8):769–72.
Google Scholar
Esimone CO, Oleghe PO, Ibezim EC, Okeh CO, Iroha IR. Susceptibility-resistance profile of micro-organisms isolated from herbal medicine products sold in Nigeria. African J Biotechnol. 2007;6(24). Available from: file:///C:/Users/ABDUL/Downloads/58199-Article%20Text-103011-1-10-20100820.pdf
Omoruyi IM, Ogunsakin AO. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL) isolated from herbal preparations. 2017. doi:https://doi.org/10.14419/ijh.v5i1.7317
Ujam NT, Oli AN, Ikegbunam MN, Adikwu MU, Esimone CO. Antimicrobial resistance evaluation of organisms isolated from liquid herbal products manufactured and marketed in South-Eastern Nigeria. J Pharm Res Int. 2013;548–62. Available from: https://www.journaljpri.com/index.php/JPRI/article/view/17830
Braide W, Oranusi SU, Nwaoguikpe RN, Offor-Emenike IU, Nwosu IL, Akobondu C, et al. Evaluation of the microbiological status and antibacterial susceptibility pattern of some herbal remedies administered orally in Nigeria. Res J Eng Appl Sci. 2013;2(1):35–42. Available from: http://eprints.covenantuniversity.edu.ng/4050/1/Oranusi_et_al_(44)%5B1%5D.pdf
Nwankwo EO, Pipi OG, Onusiriuka KN. Antibiotic resistance and plasmid profile of bacteria pathogens found in liquid herbal preparations sold in Umuahia, Abia State, Nigeria.
Kira JD. Prevalence and antimicrobial susceptibility of bacteria isolated from herbal medicines vended in Morogoro municipality, Tanzania. Sokoine University of Agriculture; 2015. Available from: http://www.scielo.org.co/pdf/rcien/v21n2/0121-1935-rcien-21-02-00085.pdf
Niyonshima Derick. “ Staphylococcus aureus” contamination levels in selected local herbal medicines sold in Kampala, Uganda. GRIN Verlag; 2016. Available from: https://www.amazon.com/Staphylococcus-Contamination-Selected-Medicines-Kampala/dp/3668719152
Famewo EB, Clarke AM, Afolayan AJ. Identification of bacterial contaminants in polyherbal medicines used for the treatment of tuberculosis in Amatole District of the Eastern Cape Province, South Africa, using rapid 16S rRNA technique. J Heal Popul Nutr. 2016;35(1):1–9. https://doi.org/10.1186/s41043-016-0064-y.
Article
Google Scholar
Kalumbi M. Bacterial and heavy metal contamination in selected commonly sold herbal medicine in Blantyre, Malawi. Malawi Med J. 2020;32(3):153–9. https://doi.org/10.4314/mmj.v32i3.9.
Article
PubMed
PubMed Central
Google Scholar
Ngemenya MN, Djeukem GGR, Nyongbela KD, Bate PNN, Babiaka SB, Monya E, et al. Microbial, phytochemical, toxicity analyses and antibacterial activity against multidrug-resistant bacteria of some traditional remedies sold in Buea Southwest Cameroon. BMC Complement Altern Med. 2019;19(1):1–11. https://doi.org/10.1186/s12906-019-2563-z.
Article
CAS
Google Scholar
Toukourou F, Baba-Moussa L. Quality-based microbial contamination analysis of nutraceuticals. Int Res J Biol Sci. 2013; Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quality-Based+Microbial+Contamination+Analysis+of+Nutraceuticals&btnG=
Mohamed A, Aldaw E karar M, Mohamed A. Assessment of bacterial contamination of some medicinal plants available in Sudanese local market. Int J Innov Pharm Sci Res [In. 2016; Available from: www.ijipsr.com
Ihsan Mosa Ewad EL-Kareem, Hatil Hashim EL-Kamali ASE. Bacterial contamination of some medicinal plant materials sold at Omdurman local market, Khartoum state, Central Sudan. Int J Microbiol Mycol | IJMM |. 2017;6, No. 3,. Available from: https://www.researchgate.net/publication/325396608
Pierre René Fotsing Kwetché, Ernest Djoko, Lenya Queen Beloe Mende S, Gamwo Dongmo, Josué Simo Louokdom, Anselme Michel Yawat Djogang, William lelorel Nankam Nguekap, Serge Honoré Tchoukoua JN. Microbiological quality of some herbal drugs in the southwest regional capital of Cameroon. Int J Recent Sci Res. 2018; Available from: http://www.recentscientific.com
Temu-Justin M, Lyamuya E, Makwaya C, Antony PR, Mloka D. Microbiological quality assessment of natural therapeutic herbal drug products prepared locally in Dar es Salaam, Tanzania. Afr J Health Sci. 1998;5(3–4):140–3. https://doi.org/10.3329/bjb.v48i2.47675.
Article
CAS
PubMed
Google Scholar
Idu M, Jimoh A, Ovuakporie-Uvo O. Microbial load of some polyherbal products from Lagos State, Nigeria. Int J Ethnobiol Ethnomed. 2015;1(1):1–14. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1043.1464&rep=rep1&type=pdf
Ideh JE, Ogunkunle ATJ. User frequency and microbial contaminants of traditional oral powdered herbal formulations in Ogbomoso, Nigeria. J Med Plants Econ Dev. 2019;3(1):1–9. https://doi.org/10.4102/jomped.v3i1.67.
Article
Google Scholar
MacDonald I, Omonigho S, Erhabor J, Efijuemue H. Microbial load of some medicinal plants sold in some local markets in Abeokuta, Nigeria. Trop J Pharm Res. 2010;9(3). doi:https://doi.org/10.4314/tjpr.v9i3.56285
Van Vuuren S, Williams VL, Sooka A, Burger A, Van der Haar L. Microbial contamination of traditional medicinal plants sold at the Faraday muthi market, Johannesburg, South Africa. South African J Bot. 2014;94:95–100. https://doi.org/10.1016/j.sajb.2014.06.002.
Article
Google Scholar
World Health Organization (WHO). Prioritization of pathogens to guide discovery, research, and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization; 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/311820/WHO-EMP-IAU-2017.12-eng.pdf
World Health Organization (WHO). A global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2018. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
Poudel A, Hathcock T, Butaye P, Kang Y, Price S, Macklin K, et al. Multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Staphylococcus spp. in houseflies and blowflies from farms and their environmental settings. Int J Environ Res Public Health. 2019;16(19):3583. Available from: https://pubmed.ncbi.nlm.nih.gov/31557837/
Paulson JR, Mahmoud IY, Al-Musharafi SK, Al-Bahry SN. Antibiotic-resistant bacteria in the environment as bio-indicators of pollution. Open Biotechnol J. 2016;10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/21237506/
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, et al. The one health concept: 10 years old and a long road ahead. Front Vet Sci. 2018;5:14. https://doi.org/10.3389/fvets.2018.00014.
Article
PubMed
PubMed Central
Google Scholar
Sharmin M, Nur IT, Acharjee M, Munshi SK, Noor R. Microbiological profiling and the demonstration of in vitro anti-bacterial traits of the major oral herbal medicines used in Dhaka Metropolis. Springerplus. 2014;3(1):739. Available from: https://pubmed.ncbi.nlm.nih.gov/25674469/
McCarthy M. Woman dies after infection with bacteria resistant to all antibiotics available in the US. British Medical Journal Publishing Group; 2017. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=McCarthy%2C+M.+%282017%29.+Woman+dies+after+infection+with+bacteria+resistant+to+all+antibiotics+available+in+US.+British+Medical+Journal+Publishing+Group.&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AEq
Aliberti S, Cilloniz C, Chalmers JD, Zanaboni AM, Cosentini R, Tarsia P, et al. Multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia: a European perspective. Thorax. 2013;68(11):997–9. https://doi.org/10.1136/thoraxjnl-2013-203384.
Article
PubMed
Google Scholar
World Health Organization (WHO). WHO guidelines for assessing the quality of herbal medicines with reference to contaminants and residues. World Health Organization; 2007. Available from: https://apps.who.int/iris/handle/10665/43510
World Health Organization (WHO). Guidelines for assessing the quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization; 2007. 2007.
Brown JC, Jiang X. Prevalence of antibiotic-resistant bacteria in herbal products. J Food Prot. 2008;71(7):1486–90. https://doi.org/10.4315/0362-028x-71.7.1486.
Article
PubMed
Google Scholar
Mashak Z, Tavakoli-Far B. Antimicrobial resistance properties of Staphylococcus aureus isolates from powdered packaged medicinal plants and bottled herbal distillates. 2020. doi:https://doi.org/10.21203/rs.3.rs-116659/v1
Breurec S, Guessennd N, Timinouni M, Le TTH, Cao V, Ngandjio A, et al. Klebsiella pneumoniae resistant to third-generation cephalosporins in five African and two Vietnamese major towns: multiclonal population structure with two major international clonal groups, CG15 and CG258. Clin Microbiol Infect. 2013;19(4):349–55.
Article
CAS
Google Scholar
World Health Organization. The selection and use of essential medicines: report of the WHO Expert Committee, 2015 (including the 19th WHO Model List of Essential Medicines and the 5th WHO Model List of Essential Medicines for Children). Vol. 994. World Health Organization; 2015. Available from: https://www.sciencedirect.com/science/article/pii/S0032579119301063#bib55
World Health Organization (WHO). WHO model list of essential medicines - 22nd list, 2021. Geneva; 2021. Report No.: WHO/MHP/HPS/EML/2021.02). Available from: file:///C:/Users/ABDUL/Downloads/WHO-MHP-HPS-EML-2021.02-eng.pdf
Pereira LMP, Phillips M, Ramlal H, Teemul K, Prabhakar P. Third-generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: the need for an antibiotic policy. BMC Infect Dis. 2004;4(1):1–7.
Article
Google Scholar
Klein NC, Cunha BA. Third-generation cephalosporins. Med Clin North Am. 1995;79(4):705–19. Available from: https://www.researchgate.net/publication/337838339_Third_Generation_Cephalosporins
Arumugham VB, Cascella M. Third Generation Cephalosporins. StatPearls. 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549881/
Downie L, Armiento R, Subhi R, Kelly J, Clifford V, Duke T. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics—systematic review and meta-analysis. Arch Dis Child. 2013;98(2):146–54. https://doi.org/10.1136/archdischild-2012-302033.
Article
PubMed
Google Scholar
Qiao J, Zhang Q, Alali WQ, Wang J, Meng L, Xiao Y, et al. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. Int J Food Microbiol. 2017;248:72–81.
Article
CAS
Google Scholar
Lester R, Musicha P, Van Ginneken N, Dramowski A, Hamer DH, Garner P, et al. Prevalence and outcome of bloodstream infections due to third-generation cephalosporin-resistant Enterobacteriaceae in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2020;75(3):492–507.
Article
CAS
Google Scholar
Dramowski A, Ong’ayo G, Rehman AM, Whitelaw A, Labi A-K, Obeng-Nkrumah N, et al. Mortality attributable to third-generation cephalosporin resistance in gram-negative bloodstream infections in African hospitals: a multi-site retrospective study. JAC-antimicrobial Resist. 2021;3(1):dlaa130. Available from: https://academic.oup.com/jacamr/article/3/1/dlaa130/6104122
Tack B, Vanaenrode J, Verbakel JY, Toelen J, Jacobs J. Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: a systematic review on antimicrobial resistance and treatment. BMC Med. 2020;18(1):1–22. https://doi.org/10.1186/s12916-020-01652-4.
Article
Google Scholar
Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379(9835):2489–99. https://doi.org/10.1016/S0140-6736(11)61752-2.
Article
PubMed
PubMed Central
Google Scholar
Ko W-C, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002;8(2):160. https://doi.org/10.3201/eid0802.010025.
Article
PubMed
PubMed Central
Google Scholar
Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010;300(6):371–9. https://doi.org/10.1016/j.ijmm.2010.04.005.
Article
CAS
PubMed
Google Scholar
Ward PML, Fasitsas S, Katz SE. Inhibition, resistance development, and increased antibiotic and antimicrobial resistance caused by nutraceuticals. J Food Prot. 2002;65(3):528–33. https://doi.org/10.4315/0362-028x-65.3.528.
Article
PubMed
Google Scholar
Pallett A, Hand K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. J Antimicrob Chemother. 2010;65(suppl_3):iii25–33. doi:https://doi.org/10.1093/jac/dkq298